Öveçoğlu, M. Lutfi

Loading...
Profile Picture
Name Variants
Öveçoğlu, M.L.
Öveçoğlu, Mustafa Lutfi
Ovecoglu, Mustafa Lutfi
Öveçoğlu, M. Lutfi
Lütfi Öveçoğlu, M.
Ovecoglu, Lutfi
Oveçoğlu, M. Lutfi
Job Title
Email Address
ovecoglum@mef.edu.tr
Main Affiliation
02.03. Department of Mechanical Engineering
Status
Current Staff
Website
Scopus Author ID
Turkish CoHE Profile ID
Google Scholar ID
WoS Researcher ID

Sustainable Development Goals

7

AFFORDABLE AND CLEAN ENERGY
AFFORDABLE AND CLEAN ENERGY Logo

1

Research Products
Documents

232

Citations

3201

h-index

29

Documents

227

Citations

3098

Scholarly Output

11

Articles

11

Views / Downloads

2790/1371

Supervised MSc Theses

0

Supervised PhD Theses

0

WoS Citation Count

36

Scopus Citation Count

39

WoS h-index

3

Scopus h-index

3

Patents

0

Projects

0

WoS Citations per Publication

3.27

Scopus Citations per Publication

3.55

Open Access Source

1

Supervised Theses

0

Google Analytics Visitor Traffic

JournalCount
Diamond and Related Materials2
Advanced Engineering Materials2
FlatChem1
Intermetallics1
International Journal of Refractory Metals and Hard Materials1
Current Page: 1 / 2

Scopus Quartile Distribution

Competency Cloud

GCRIS Competency Cloud

Scholarly Output Search Results

Now showing 1 - 10 of 11
  • Article
    Citation - WoS: 8
    Citation - Scopus: 10
    Microstructural, Thermal Characterization and Cmas Corrosion Resistance of Novel Quaternary (y0,25er0,25tm0,25yb0,25)2si2o7 High Entropy Disilicate Material
    (Elsevier Sci Ltd, 2024) Çınar, Muharrem Mert; Akyürek, Öykü; Yüksek, Ahmet Numan; Ağaoğulları, Duygu; Acem, Ümran; Öveçoğlu, Mustafa Lutfi; Kavak, Sina; Gençer, Rabia
    A novel (Y0,25Er0,25Tm0,25Yb0,25)2Si2O7 high entropy disilicate quaternary composition was synthesized from commercial oxide powders using ball milling and sintering processes as a candidate material for environmental barrier coatings (EBC). As-synthesized high entropy disilicate powders were sintered at different durations (12, 18, and 24 h) at 1600 degrees C in a muffle furnace before characterization. The XRD and SEM analyses revealed the single-phase monoclinic structure (beta-type) with homogeneous elemental distribution for the sintered samples. The (Y0,25Er0,25Tm0,25Yb0,25)2Si2O7 samples exhibited low thermal diffusivity coefficient, low thermal conductivity, a close coefficient of thermal expansion (CTE) to SiC and a high temperature stability. The (Y0,25Er0,25Tm0,25Yb0,25)2Si2O7 samples were subjected to CMAS corrosion tests at 1300 degrees C with different durations (2, 12, and 24 h) to evaluate CMAS corrosion resistance. Additionally, Yb2Si2O7 samples were prepared and subjected to molten CMAS in the same way for comparison. Based on the results, the CMAS corrosion resistance was improved with (Y0,25Er0,25Tm0,25Yb0,25)2Si2O7 composition.
  • Article
    Citation - WoS: 8
    Citation - Scopus: 9
    Graphene Nanoplatelet Reinforced Al-Based Composites Prepared From Recycled Powders Via Mechanical Alloying and Pressureless Sintering
    (Elsevier Science Sa, 2024) Süzer, İlayda; Hayırcı, Sena Burcu; Boyacı, Ege; Deniz, Ayşe; Mertdinç Ülküseven, Sıddıka; Öveçoğlu, Mustafa Lutfi; Ağaoğulları, Duygu
    This study reports on the powder metallurgy preparation and characterization of aluminum-graphene nanoplatelet (Al-GNP) composites synthesized using recycled Al powders. Recycled Al and GNP powders (0.1-1 wt%) were mechanically alloyed (MA'd) for 4 h, followed by cold pressing (at 450 MPa) and pressureless sintering at 590 degrees C for 2 h. Starting powders were analyzed using an optical emission spectrometer (OES) and a Raman spectrometer. Also, MA'd powders and sintered samples were characterized using an X-ray diffractometer (XRD), a scanning electron microscope/energy dispersive spectrometer (SEM/EDS), and a differential scanning calorimeter (DSC). Particle size analyses, pycnometer, and Archimedes' densities, Vickers microhardness, dry-sliding wear, and compression tests were also conducted. The Al4C3 formation was observed in the XRD patterns of sintered compositions. The highest and lowest relative densities were measured for the 1 wt% and 0.1 wt% GNP reinforced samples as 97 % and 92 %, respectively. The highest hardness value was obtained as approximately 1.31 GPa for 1 wt% GNP reinforced. With the addition of reinforcement GNP, the wear rate developed to approximately 0.00225 mm3/Nm. The compressive strength increased from nearly 70 MPa to 162 MPa.
  • Article
    Citation - WoS: 1
    Citation - Scopus: 1
    A Novel Plasma-Facing Ndb6 Particulate Reinforced W1ni Matrix Composite: Powder Metallurgical Fabrication, Microstructural and Mechanical Characterization
    (Elsevier Sci Ltd, 2024) Boztemur, Burçak; Öveçoğlu, Mustafa Lutfi; Luo, Laima; Ağaoğulları, Duygu; Xu, Yue; Alkraidi, Ammar
    Tungsten (W) is one of best candidate metal for plasma-facing materials (PFM), especially due to its high melting temperature and neutron absorption capability. However, converting W into bulk PFM is hard because of its high melting point. This problem can be solved by adding metallic sintering aids with low melting points. In this study, W matrix with 1 wt% Ni aid was reinforced by adding NdB6 particles (1, 5, and 10 wt%). It can be introduced as a novel potential PFM, thanks to its low volatility and high neutron absorbability. The ceramic and composite powders produced via mechanochemical synthesis and mechanical alloying were examined in terms of composition, particle size, crystallite size, and lattice strain. Samples sintered via pressureless sintering (PS) and spark plasma sintering (SPS) were microstructurally analyzed by using an X-ray diffractometer (XRD), a scanning electron microscope (SEM) attached with an energy dispersive spectroscope (EDS), and mechanically analyzed in terms of microhardness and wear behavior. Based on the results, W2B and WB phases emerged in the SPS'ed W1Ni-5NdB6 and PS'ed./SPS'ed W1Ni-10NdB6 composites. SPS'ed W1Ni-10NdB6 composite had the highest hardness value and the lowest specific wear rate. The SPS'ed W1Ni-5NdB6 composite showed fewer surface damages and higher irradiation resistance as compared with other samples after exposure of He+ irradiation.
  • Article
    Room-Temperature Synthesis of Refractory Borides: a Case Study on Mechanochemistry and Characterization of Mo-Borides and W-Borides
    (Elsevier Sci Ltd, 2025) Süzer, İlayda; Akbari, Amir; Kaya, Faruk; Mertdinç Ülküseven, Sıddıka; Derin, Bora; Öveçoğlu, M. Lütfi; Ağaoğulları, Duygu
    Mo-boride and W-boride powders were produced from native boron oxide, magnesium, and related metal oxide starting materials by mechanochemical synthesis (MCS) followed by an purification treatment. The reaction formation mechanisms and the products were predicted with the FactSageTM thermochemical simulation program. Different conditions were tested to determine the optimum synthesis parameters. MCS was conducted at stoichiometric ratios and different milling durations, using excess reactant amounts over the determined optimum time. After MCS, unwanted phases were removed by HCl acid leaching. Detailed phase analyses of the final powders were obtained by X-ray diffractometer (XRD), whereas detailed microstructure characterization was conducted by scanning electron microscope/energy dispersion spectrometer (SEM/EDS), transmission electron microscope (TEM) and particle size analyzer. Among the utilized parameters, the ideal composition chosen for Mo boride synthesis was 6 h milled and leached MoO3-100 wt% B2O3-50 wt% Mg (1.41 mu m), including alpha-MoB, beta-MoB, MoB2, Mo2B, Mo2B5, and Mo phases. For the synthesis of W boride, the proper composition was found as WO3-100 wt% B2O3-50 wt% Mg (0.37 mu m) containing W2B5, WB, beta-WB, WB4, W2B, and W phases after milling for 20 h and leaching. Besides, as a result of the oxidation resistance measurements at 700 and 800 degrees C, phases belonging to MoO2 and WO2 were found along with boride phases.
  • Article
    Citation - WoS: 3
    Citation - Scopus: 3
    Powder metallurgy processing of seven/eight component multi-phase (HfTiZr-Mn/Mo/W/Cr/Ta)B2 high entropy diboride ceramics
    (Elsevier, 2024) Suzer, Ilayda; Akbari, Amir; Ates, Semih; Bayrak, Kuebra Gurcan; Mertdinc-Ulkuseven, Siddika; Arisoy, C. Fahir; Agaogullari, Duygu; Öveçoğlu, M. Lutfi
    This study aims to show the possibility of synthesizing seven- and eight-component high entropy diboride (HEB) ceramics using high energy ball milling-assisted spark plasma sintering (SPS). Metal boride powders, synthesized in laboratory conditions from metal oxide-boron oxide-magnesium powder blends, were combined equimolarly as seven and eight components containing systems. Afterwards, hybridized powders were mechanically alloyed (MA) for 6 h and subjected to spark plasma sintering (SPS) at 2000 degrees C and under 30 MPa. Detailed phase analysis and physical, microstructural, and mechanical characterization of the samples were performed. in the sintered products, the main phase belongs to the HEB, and also low amounts of Hf/Zr oxides and secondary phases (W or Ti-rich) occurred. The highest hardness was observed at the (HfTiZrMoWCrTa)B-2 with 25 GPa, and the lowest hardness was seen at the (HfTiZrMnCrMoWTa)B2 with 17 GPa. Also, the highest wear resistance was calculated for the (HfTiZrMnCrMoTa)B-2 as 6.05 x 10(-7) mm(3)/Nm. Additionally, (HfTiZrMnMoWTa)B-2 and (HfTiZrMnMoCrTa)B-2 have the highest and lowest Archimedes' densities, with 7.94 g/cm(3) and 6.91 g/cm(3), respectively.
  • Article
    Citation - WoS: 1
    Citation - Scopus: 1
    Powder Metallurgical Processing of Al–5 Wt% Cu Matrix Composites Reinforced With Mosi2 and Wsi2 Particulates
    (John Wiley and Sons Inc, 2025) Mertdinç-Ülküseven, S.; Ovalı-Döndaş, D.; Süzer, İ.; Altıntaş, M.; Can Karaca, M.; Özal, B.; Öveçoğlu, Mustafa Lütfi
    Herein, investigations on the microstructural, physical, and mechanical properties of molybdenum disilicide (MoSi2)- and tungsten disilicide (WSi2)-reinforced aluminum (Al)–copper (Cu) matrix composites are reported. Powder metallurgy methods such as mechanochemical synthesis (MCS), mechanical alloying (MA), cold pressing, and pressureless sintering are combined to produce composites. First of all, MoSi2 and WSi2 nanoparticles are synthesized by MCS and selective acid leaching, yielding reinforcement materials for Al–Cu matrix. Powder blends consisting of 95 wt% Al and 5 wt% Cu are mixed with metal disilicides at different weight percentages (1, 2, and 5 wt%). MA for 4 h is conducted on these overall blends using a high-energy ball mill. Microstructural and thermal properties of the as-blended and mechanically alloyed powders are determined, and then they are compacted under 450 MPa and sintered at 550 °C for 2 h. Mechanical characterization of the composites reveals an increase in hardness and wear resistance with an increasing amount of reinforcement content. Among bulk samples, 5 wt% WSi2-reinforced composites have the highest microhardness (165 ± 15 HV) and lowest wear rate (1.69 × 106 μm3 Nm−1) values. However, under the compression forces, the highest toughness and strength are obtained from 2 wt%-reinforced composites. © 2024 Wiley-VCH GmbH.
  • Article
    Nbmovta Refractory High-Entropy Alloy Incorporated Wni Matrix Composite as a Future Plasma-Facing Material: Evaluation of Mechanical Properties and Helium Ion Irradiation Behavior
    (Elsevier Sci Ltd, 2025) Boztemur, Burcak; Filiz, Kaan; Karaguney, Zahide; Gokaydin, Eyupcan; Bozkurt, Yasin; Ozbasmaci, Ceren; Ovecoglu, M. Lutfi
    Refractory high-entropy alloys (RHEAs) have gained attention in the last decades with their high mechanical strength, self-healing mechanism, and high irradiation resistance. These materials are evaluated to have a high potential as plasma-facing materials for fusion reactors. In this study, helium ion irradiation and mechanical behaviors of the RHEA-reinforced WNi matrix composites were investigated based on this perspective. Equimolar molybdenum, niobium, tantalum and vanadium powders were mechanically alloyed for 6 h to produce NbMoVTa RHEA with a single BCC phase. Then, different amounts (10, 20, 30, and 40 wt%) of RHEA were added into the W1Ni (containing 99 wt% W and 1 wt% Ni) matrix by planetary ball milling for 72 h. Consolidation was conducted by spark plasma sintering technique (1410 degrees C, 1 min). X-ray diffraction, scanning electron microscopy coupled with energy dispersion spectroscopy, and Archimedes' density analyses were performed on the composites. Moreover, wear and hardness properties of the composites were examined, and the lowest specific wear rate (0.59 mm3/N.m x 10- 5) and the highest hardness value (10.10 GPa) were found for the W1Ni-40RHEA composite. Helium irradiation was exposed to the composites to observe their irradiation resistance. It was observed that the lowest increment and the least deformation were obtained with the SPS'ed W1Ni-40RHEA composite. With the analysis of He+ irradiation, it was determined that the effect of radiation on mechanical properties is irrelevant. Also, it was observed that the addition of RHEA into the W matrix can create a high potential for using plasma-facing material. Moreover, it decreased the problems of tungsten against He+ irradiation.
  • Article
    Citation - WoS: 1
    Mechanochemical Synthesis and Characterization of Nanostructured Erb4 and Ndb4 Rare-Earth Tetraborides
    (John Wiley and Sons Inc, 2024) Boztemur, B.; Kaya, F.; Derin, B.; Öveçoğlu, M.L.; Li, J.; Ağaoğulları, D.
    Rare-earth borides have become very popular in recent decades with high mechanical strength, melting point, good corrosion, wear, and magnetic behavior. However, the production of these borides is very challenging and unique. The production of ErB4 and NdB4 nanopowders via mechanochemical synthesis (MCS) is reported in this study first time in the literature. Er2O3 or Nd2O3, B2O3, and Mg initial powders are mechanically alloyed for different milling times to optimize the process. Rare-earth borides with MgO phases are synthesized, then MgO is removed with HCl acid. The nanostructured rare-earth tetraboride powders are analyzed using X-ray diffraction (XRD). Based on the XRD, ErB4 powders are produced successfully at the end of the 5 h milling. However, the NdB4 phase does not occur as the stoichiometric ratio, so the B2O3 amount is decreased to nearly 35 wt%. When the amount of B2O3 is decreased to 20 wt%, NdB4 and NdB6 phases are 50:50 according to the Rietveld analysis. However, a homogenous NdB4 phase is obtained with 30 wt% loss of B2O3. The average particle sizes of ErB4 and NdB4 powders are nearly 100.4 and 85.6 nm, respectively. The rare-earth tetraborides exhibit antiferromagnetic-to-paramagnetic-like phase transitions at 18 and 8.53 K, respectively. © 2024 The Author(s). Advanced Engineering Materials published by Wiley-VCH GmbH.
  • Article
    Citation - WoS: 9
    Citation - Scopus: 10
    Computational Alloy Design, Synthesis, and Characterization of Wmonbvcrx Refractory High Entropy Alloy Prepared by Vacuum Arc Melting
    (Elsevier Ltd, 2024) Alkraidi, A.B.N.; Mansoor, M.; Boztemur, B.; Gökçe, H.; Kaya, F.; Yıldırım, C.; Öveçoğlu, M.L.
    Prior investigations have demonstrated enhanced mechanical properties, such as hardness and wear resistance, through high-entropy alloy designs that contain refractory metals. We propose the WMoNbVCrx alloy phase space as a single-phase BCC-structured, hard, and refractory high-entropy alloy for the first time. The WMoNbVCrx alloy (x = 0, 0.25, 0.5, 0.75, and 1) system is investigated computationally through CALPHAD and DFT for the equimolar and non-equimolar compositional phase spaces and synthesized through vacuum arc melting. The DFT calculations demonstrated the excellence of specific non-equimolar compositional spaces. It was found that stoichiometries rich in W and poor in V are exceptionally hard, while those rich in V and poor in W demonstrate unprecedented toughness, as determined by the ductility descriptor (Pugh's Ratio). The computational analysis shows the significance of microstructures that contain both (W-rich and W-poor) solid solution, where a synergy between hardness and toughness is created. Our experimental synthesis using vacuum arc melting demonstrated the possibility of successfully producing these alloys with W-rich (dendritic) and W-poor (interdendritic) solid solution regions, starting from elemental powders. The introduction of chromium (Cr) resulted in enhanced microhardness and wear resistance. The peak microhardness was attained when 0.5 moles of Cr were added, reaching 7.03 ±0.24 GPa, accompanied by the least wear volume loss. The produced alloys were found to align with the computationally predicted-designed alloys in terms of the hardness and Young's modulus trends that they follow. This comprehensive investigation underscores the synergistic application of CALPHAD and DFT techniques in the tailored design of novel high-entropy alloys, explaining their synthesis, structural correspondence, and the pivotal role of Cr in enhancing the mechanical properties of these alloys. © 2024 Elsevier B.V.
  • Article
    Citation - WoS: 3
    Citation - Scopus: 3
    Graphene Encapsulated Fe-Based Nanoparticles Synthesized From Iron(ii) Sulfate Heptahydrate Containing Precursors: Influence of Chemical Vapor Deposition Parameters
    (Elsevier, 2024) Öveçoğlu, Mustafa Lutfi; Ağaoğulları, Duygu; Felderhoff, Michael; Winkelmann, Frederik; Demirbaş, Derya; Mertdinç Ülküseven, Sıddıka
    Importance of process parameters on thermal, microstructural, and magnetic properties of synthesized core/shell nanoparticles was investigated during their production via chemical vapor deposition (CVD). Herein, iron(II) sulfate heptahydrate and fumed silica powders were mixed in ethanol, and the solution was used for precursor preparation by utilizing spray dryer. These prepared precursors were treated in the CVD process under methane/ hydrogen (CH4/H2) 4 /H 2 ) gas flow to synthesize graphene-encapsulated core/shell nanoparticles. CVD studies were performed at various temperatures (900-1000 degrees C), holding times (60, 90 min), and gas flow rates (100, 200 mL/ min). After CVD studies, purification was applied to remove uncoated nanoparticles, and remaining fumed silica phases originated from the precursor via selective acid leaching using hydrofloric acid (HF) and hydrochloric acid (HCl) solutions. X-ray diffractometry, Raman and Mossbauer spectroscopy, Zeta potential measurement, thermogravimetry combined with differential scanning calorimetry, scanning and transmission electron microscopy/energy-dispersive spectroscopy, and vibrating sample magnetometry (VSM) results yielded the optimized CVD parameters as 950 degrees C, 60 min, CH4/H2: 4 /H 2 : 1/1 and 50 mbar. The characterization results proved that multilayer graphene (d-spacing: 0.34 nm) encapsulated Fe/Fe3C 3 C nanoparticles (average core size: 46.9 nm, shell thickness: 16.6 nm) can be successfully synthesized by using CVD process followed by a leaching treatment. VSM results revealed that synthesized nanoparticles had soft ferromagnetic properties (Ms: s : 90.6-185 emu/ g; Hc: c : 255.4-301.6 Oe). Characterization results deepen the understanding of process parameters of CVD system on characteristics of core/shell nanoparticles.