Gökmen, Muhittin

Loading...
Profile Picture
Name Variants
Gokmen, Muhittin
Muhittin, Gökmen
Gökmen, M.
Muhittin Gokmen
Job Title
Email Address
gokmenm@mef.edu.tr
Main Affiliation
02.02. Department of Computer Engineering
Status
Current Staff
Website
Scopus Author ID
Turkish CoHE Profile ID
Google Scholar ID
WoS Researcher ID

Sustainable Development Goals

9

INDUSTRY, INNOVATION AND INFRASTRUCTURE
INDUSTRY, INNOVATION AND INFRASTRUCTURE Logo

1

Research Products
Documents

102

Citations

1462

h-index

16

Documents

56

Citations

775

Scholarly Output

11

Articles

3

Views / Downloads

8170/50186

Supervised MSc Theses

2

Supervised PhD Theses

0

WoS Citation Count

593

Scopus Citation Count

726

WoS h-index

4

Scopus h-index

4

Patents

0

Projects

3

WoS Citations per Publication

53.91

Scopus Citations per Publication

66.00

Open Access Source

7

Supervised Theses

2

Google Analytics Visitor Traffic

JournalCount
Signal Processing: Image Communication2
Applied Sciences1
Companion International Conference on Multimodal Interaction -- NOV 04-08, 2024 -- San Jose, COSTA RICA1
Conference: 11th International Conference on Universal Access in Human-Computer Interaction (UAHCI) held as part of 19th International Conference on Human-Computer Interaction (HCI International) Location: Vancouver, CANADA Date: JUL 09-14, 20171
2016 24th Signal Processing and Communication Application Conference (SIU)1
Current Page: 1 / 2

Scopus Quartile Distribution

Competency Cloud

GCRIS Competency Cloud

Scholarly Output Search Results

Now showing 1 - 10 of 11
  • Conference Object
    Yüz Tanıma
    (Elektrik Mühendisleri Odası EMO), 2015) Muhittin, Gökmen
    Görüntü işleme alanında çalışan 36 farklı üniversiteden 52 doktora ve yüksek lisans öğrencisinin katılımı ile başlayan akademik kampta, alanında uzmanlıkları ile tanınan 11 farklı üniversiteden 14 akademisyenin katılımıyla 17 farklı seminer ve ders gerçekleştirildi. 2. Akademik Kamp çalışmalarına, 16 Nisan 2015 tarihinde saat 09:00`da açılış töreni ile başladı. Açılışta ilk olarak konuşan EMO Müdürü Emre Metin, kamp çalışmalarına ilişkin temel bilgileri katılımcılara aktardı. Metin`in ardından kürsüye gelen EMO Yönetim Kurulu Başkanı Hüseyin Yeşil ise konuşmasına kamp çalışmalarına katkı veren EMO MİSEM Komisyonu Başkanı Orhan Örücü, Prof . Dr. Tayfun Akgül ve kampa ev sahipliği yapan Nesin Vakfı`na teşekkür ederek, başladı. EMO Akademiyle Bağını Güçlendiriyor EMO`nun akademi dünyası ile daha yakın ilişki kurmayı hedeflediğine dikkat çeken Yeşil, ikincisi yapılan akademik kampı tekrarlamak istediklerini kaydetti. EMO`nun kendi meslek alanlarına giren üniversitelerin ilgili bölümleri ile özel ilişkiler kurmaya çalıştığını ifade eden Yeşil, bu kapsamda 25 Ekim 2014 tarihinde 56 bölüm başkanı ile bir toplantı düzenlediklerini kaydetti. EMO ve üniversite çalışmalarının koordine edilebilmesi için 11 Nisan 2015 tarihinde bir toplantı daha gerçekleştirildiğini ifade eden Yeşil, bu kapsamda Elektrik-Elektronik-Kontrol-Biyomedikal Mühendisliği Bölüm Başkanları Konseyi`nin de kurulduğunu bildirdi. EMO tarafından yayımlanan EMO Bilimsel Dergi ile alandaki bilimsel dergi ihtiyacının giderilmeye çalışıldığını ifade eden Yeşil, derginin 8. sayının hazırlıklarının yapıldığını kaydetti. Genç akademisyenlerden EMO Bilimsel Dergisi için makale katkısı isteyen Yeşil, baş editör Prof. Dr. Hamit Serbest ve diğer dergi editörlerine katkıları dolayısıyla teşekkür etti. EMO`nun Meslek İçi Eğitim Merkezi (MİSEM) çalışmaları kapsamında yürüttüğü eğitim ve seminerlere de dikkat çeken Yeşil, mesleki ve teknik gelişmelerin bu eğitimlerle üyelere aktarılmaya çalışıldığını vurguladı. EMO`nun mesleki ve teknik gündemin yanında toplumsal yaşamda da katkılar sağlamaya çalıştığını ifade eden Yeşil, konuşmasını şöyle sürdürdü: "Yalnızca Soma`da yaşanan iş cinayeti hem de tüm Türkiye`yi karanlıkta bırakan elektrik kesintisi konularında bile kamuoyunu bilgilendirme çabalarımız bile EMO`nun varlığının önemli olduğunu ortaya koymaktadır. Gerçeklerin ortaya çıkması için yürütmeye çalıştığımız bu çalışmaların genç arkadaşlarımızın da katkılarıyla güçlenerek, süreceğine inanıyoruz." Yeni Kamplar Geliyor Yeşil`in ardından kürsüye gelen EMO MİSEM Komisyonu Başkanı Orhan Örücü ise konuşmasına daha önce düzenlenen akademik kampa ilişkin bilgi aktararak başladı. Örücü, Akademik Kampa 36 farklı üniversiteden toplam 52 öğrencinin katılım sağlamasının önemine işaret ederek, kampta yer alan genç 20 kadın akademisyeni de kutladı. Akademik kampların farklı konularda daha sık periyotlarda tekrarlanması için çalışmalar yürütüldüğünü ifade eden Örücü, ODTÜ`den Prof. Dr. Murat Eyüpoğlu ile birlikte "Manyetik Görüntüleme", yine ODTÜ`den Prof. Dr. Bülent Ertan ile "Elektrik Makineleri ve Güç Elektroniği" ve İTÜ`den Doç. Dr. Neslihan Şengür ile "Yapay Sinir Ağları" konularına ilişkin kamp düzenlenebilmesi için çalışmalar yürütüldüğünü bildirdi. Örücü, hazırlık çalışmaları kapsamında seminerlere katılacak deneyimli akademisyenlerin belirlenmesi için önümüzdeki dönemde genç akademisyenler arasından EMO tarafından anketler düzenleneceği ve öneriler alınacağını kaydetti. Örücü`nün ardından konuşan Prof. Dr. Tayfun Akgül ise bir önceki kamp çalışmalarına değinerek, "çok keyifli" bir çalışma sürecinin yaşandığını kaydetti. Akgül, akademik kampların daha sıcak ilişkiler yaratarak, çalışmaların ivmesini artırdığına dikkat çekti. Nesin Vakfı`na Matematik Köyü`nden yarattığı çalışma ortamı için teşekkür eden Akgül, tüm katılımcıların kamp çalışmalarında önemli katkılar sağlayacağına inandığını ifade etti. Akgül`ün konuşmasını tamamlamasının ardından, katılımcılar kendini tanıtarak yaptıkları çalışmalara ilişkin bilgi aktardı. Kampta daha sonra Prof. Dr. Muhittin Gökmen`in verdiği "Yüz Tanıma" başlıklı derse geçildi. Kampta ilk gün çalışmaları kapsamında Gökmen`in yanı sıra Prof. Dr. Tayfun Akgül "Bilim Etiği", Prof. Dr. Hamit Serbest "Bilim, Mühendislik ve Öğretim Kurumları", Prof. Dr. Tayfun Akgül "Yüzsüz Yüz Tanıma" ve Prof. Dr. Enis Çetin "Orman Yangını Bulma, Örüntü Tanıma, Mikroskop Görüntülerinin İşlenmesi" konu başlıklarında seminerler verdi. Kamp çalışmaları kapsamında 17 Mart 2015 Cuma günü ise ilk olarak EMO Bilimsel Dergi Yayın Kurulu Üyesi Prof. Dr. Altay Güvenir tarafından "EMO Bilimsel Dergi Tanıtımı" başlıklı oturum düzenlendi. Ardından Prof. Dr. Atilla Bir`in tarafından ise katılımcılara "Öklid`ten Nasreddin Tusi`ye, Tusi`den Uluğ Bey‘e Bilim" başlıklı sunum gerçekleştirildi. Kamp çalışmaları kapsamında öğlden sonra Prof. Dr. Ayşin Ertüzün tarafından "Doku Analizi ve Örüntü Tanıma", Yrd. Doç. Dr. Emre Sümer tarafından ise "Görüntü İşleme Teknikleri ile 3-B Bina Modelleme" dersleri verildi. Günün son dersinin ise Prof. Dr. Ali Nesin, "Mühendisler ve Matematik; Sayı Ne Demektir?" başlıklığı altında yaptı. Cumartesi günü ise ilk olarak Yrd. Doç. Dr. Berk Gökberk`ün "Biyometri", Prof. Dr. Arif Nacaroğlu`nun "Sıkıştırılmış Sinyallerin Algılanması", Yrd. Doç. Dr. Özlem Durmaz İncel`in "İnsan Eylemi ve Bağlam Tanıma" ve Prof. Dr. A. Aydın Alatan`ın "Ardışık Görüntülerden Sahne Derinliği Kestirimi" başlıklı dersleri gerçekleştirildi. Kampın son gününde ise Yrd. Doç. Dr. Alper Selver`in "Sıradüzenli Sistemlerin Günlük Yaşam Uygulamaları: Kalite Tespiti, Organ Görüntüleme ve Radarla Nesne Tespiti" ile Doç. Dr. Hazım Kemal Ekenel`in "İçerik Tabanlı İmge ve Video Çıkarımı" başlıklı dersleri yapıldı. Kamp çalışmaları Efes Harabeleri`ne ve Şirince Köyü`ne yapılan gezi ile tamamlandı.
  • Conference Object
    Citation - WoS: 2
    Citation - Scopus: 2
    Facial Expression Recognition From Still Images
    (2017) Gökmen, Muhittin; Gazioglu, Bilge Suheyla Akkoca
    With the development of technology, Facial Expression Recognition (FER) become one of the important research areas in Human Computer Interaction. Changes in the movement of some muscles in face create the facial expressions. By defining these changes, facial expressions can be recognized. In this study, a cascaded structure consists of Local Zernike Moments (LZM), Local XOR Patterns (LXP) and Global Zernike Moments (GZM) methods is proposed for the FER problem. The generally used database is the Extended Chon - Kanade (CK +) in FER problems. The database consists of image sequences of 327 expressions of 118 people. Most FER system includes recognition of 7 classes of emotions happiness, sadness, surprise, anger, disgust, fear and contempt, and we use Library of Support Vector Machines (LIBSVM) classifier for multi class classification with the leave one out cross-validation method. Our overall system performance is measured as 90.34% for FER.
  • Article
    Citation - WoS: 9
    Citation - Scopus: 11
    An Efficient Multiscale Scheme Using Local Zernike Moments for Face Recognition
    (MDPI, 2018) Gökmen, Muhittin; Başaran, Emrah; Kamasak, Mustafa E.
    In this study, we propose a face recognition scheme using local Zernike moments (LZM), which can be used for both identification and verification. In this scheme, local patches around the landmarks are extracted from the complex components obtained by LZM transformation. Then, phase magnitude histograms are constructed within these patches to create descriptors for face images. An image pyramid is utilized to extract features at multiple scales, and the descriptors are constructed for each image in this pyramid. We used three different public datasets to examine the performance of the proposed method:Face Recognition Technology (FERET), Labeled Faces in the Wild (LFW), and Surveillance Cameras Face (SCface). The results revealed that the proposed method is robust against variations such as illumination, facial expression, and pose. Aside from this, it can be used for low-resolution face images acquired in uncontrolled environments or in the infrared spectrum. Experimental results show that our method outperforms state-of-the-art methods on FERET and SCface datasets.
  • Master Thesis
    Building Footprint Extraction Using Deep Learning Techniques
    (MEF Üniversitesi, Fen Bilimleri Enstitüsü, 2018) Deniz, Oytun; Gökmen, Muhittin
    Geospatial industry is getting bigger and bigger these days in addition to creating massive amount of data. Today map features such as roads, building footprints are created through manual techniques. There is not automated solution that extracts map features such as roads, building footprints from satellite imagery. Advance automated feature extraction techniques will serve important uses of map data including disaster response. SpaceNet is a commercial satellite imagery and labeled training data to foster innovation in the development of computer vision algorithms. In this paper we will give a brief explanation about image classification, object recognition processes and why deep learning is effective on object recognition, and how we can apply these concepts to our problem which is Building Footprint extraction. And we will use SpaceNet’s dataset and apply tensorflow backhand object detection model.
  • Conference Object
    Corner Detection by Local Zernike Moments
    (2015) Ozbulak, Gokhan; Gökmen, Muhittin
    In this paper, our corner-based interest point detector, Robust Local Zernike Moment based Features (R-LZMF), which was proved to be scale, rotation and translation-invariant, is investigated for invariance against affine transformation, lighting and blurring. Furthermore, R-LZMF's corner detection capability with Zernike moments of order 4 is theoretically explained in detail. Experimental results on the Inria Dataset show that R-LZMF outperforms SIFT, CenSurE, ORB, BRISK and competes with SURF in terms of repeatability for images under affine transformation and photometric deformation such as lighting and blurring.
  • Conference Object
    Citation - WoS: 536
    Citation - Scopus: 652
    Human Semantic Parsing for Person Re-Identification
    (2018) Kalayeh, Mahdi M; Başaran, Emrah; Shah, Mubarak; Kamasak, Mustafa E; Gökmen, Muhittin
    Person re-identification is a challenging task mainly dueto factors such as background clutter, pose, illuminationand camera point of view variations. These elements hinder the process of extracting robust and discriminative representations, hence preventing different identities from being successfully distinguished. To improve the representation learning, usually local features from human body partsare extracted. However, the common practice for such aprocess has been based on bounding box part detection.In this paper, we propose to adopt human semantic parsing which, due to its pixel-level accuracy and capabilityof modeling arbitrary contours, is naturally a better alternative. Our proposed SPReID integrates human semanticparsing in person re-identification and not only considerably outperforms its counter baseline, but achieves stateof-the-art performance. We also show that, by employinga simple yet effective training strategy, standard populardeep convolutional architectures such as Inception-V3 andResNet-152, with no modification, while operating solelyon full image, can dramatically outperform current stateof-the-art. Our proposed methods improve state-of-the-artperson re-identification on: Market-1501 [48] by ~17% inmAP and ~6% in rank-1, CUHK03 [24] by ~4% in rank-1and DukeMTMC-reID [50] by ~24% in mAP and ~10% inrank-1.
  • Master Thesis
    Pre-Ocr Image Optimization by Reinforcement Learning
    (MEF Üniversitesi, Fen Bilimleri Enstitüsü, 2018) Tektunalı, Cihan; Gökmen, Muhittin
    Optical Character Recognition technology usage in digital transformation of documents is steadily growing by the help of new hardware and software technologies. However digital image optimization for more accurate OCR results continues to be a problem. In this study, we propose a reinforcement learning based model that learns optimal set of actions to increase OCR accuracy in computer screenshot images. Model input images are identified by their grayscale histogram distributions. An unprocessed base image having 100% OCR accuracy is taken initially. The correlation between the grayscale histograms of base image and input image is used for comparison. We implemented reinforcement learning’s random (or optimal) action and reward approach for creating a Q-table. For measuring image to text conversion success, Tesseract OCR software is used. The introduced approach can improve OCR accuracy especially in bulk image to document conversion jobs. By using optimal actions for single image or bulk images, it can also decrease computational load and time-consumption in image processing.
  • Article
    Citation - WoS: 13
    Citation - Scopus: 16
    Face Recognition With Patch-Based Local Walsh Transform
    (Elsevier, 2018) Uzun-Per, Meryem; Gökmen, Muhittin
    In this paper, we present a novel dense local image representation method called Local Walsh Transform (LWT)by applying the well-known Walsh Transform (WT) to each pixel of an image. The LWT decomposes an image into multiple components, and produces LWT complex images by using the symmetrical relationship between them. Cascaded LWT (CLWT) is also a dense local image representation obtained by applying the LWT again to real and imaginary parts of LWT complex images. Applying the LWT once more to real and imaginary parts of LWT complex images increases the success rate especially on low resolution images. In order to combine the advantages of sparse and dense local image representations, we present Patch-based LWT (PLWT) and Patch-based CLWT (PCLWT) by applying the LWT and CLWT, respectively, to patches extracted around landmarks of multi-scaled face images. The extracted high dimensional features of the patches are reduced through the application of the Whitened Principal Component Analysis (WPCA). Experimental results show that both thePLWT and PCLWT are robust to illumination and expression changes, occlusion and low resolution. The state-of-the-art performance is achieved on the FERET and SCface databases, and the second best unsupervised category result is achieved on the LFW database.
  • Article
    Citation - WoS: 29
    Citation - Scopus: 41
    An Efficient Framework for Visible-Infrared Cross Modality Person Re-Identification
    (Elsevier, 2020) Gökmen, Muhittin; Başaran, Emrah; Kamasak, Mustafa E.
    Visible-infrared cross-modality person re-identification (VI-ReId) is an essential task for video surveillance in poorly illuminated or dark environments. Despite many recent studies on person re-identification in the visible domain (ReId), there are few studies dealing specifically with VI-ReId. Besides challenges that are common for both ReId and VI-ReId such as pose/illumination variations, background clutter and occlusion, VI-ReId has additional challenges as color information is not available in infrared images. As a result, the performance of VI-ReId systems is typically lower than that of ReId systems. In this work, we propose a four-stream framework to improve VI-ReId performance. We train a separate deep convolutional neural network in each stream using different representations of input images. We expect that different and complementary features can be learned from each stream. In our framework, grayscale and infrared input images are used to train the ResNet in the first stream. In the second stream, RGB and three-channel infrared images (created by repeating the infrared channel) are used. In the remaining two streams, we use local pattern maps as input images. These maps are generated utilizing local Zernike moments transformation. Local pattern maps are obtained from grayscale and infrared images in the third stream and from RGB and three-channel infrared images in the last stream. We improve the performance of the proposed framework by employing a re-ranking algorithm for post-processing. Our results indicate that the proposed framework outperforms current state-of-the-art with a large margin by improving Rank-1/mAP by 29.79%/30.91% on SYSU-MM01 dataset, and by 9.73%/16.36% on RegDB dataset.
  • Conference Object
    Citation - WoS: 1
    Citation - Scopus: 1
    Face Recognition With Local Zernike Moments Features Around Landmarks
    (IEEE, 2016) Gökmen, Muhittin
    In this paper, a new method that extracts the features from the complex Local Zernike Moments (LZM) images around facial landmarks is proposed. In this method, multiple grids which are in different sizes are located on landmarks and Phase-Magnitude (PM) histograms are calculated in each cells of these grids. The PM histograms are calculated for every component of LZM and the feature vectors are created by concatenating these histograms. By reducing the dimensionality of these vectors using Whitened Principle Component Analysis, more robust descriptors are constructed. It is shown that the state-of-the-art results are obtained in the experiments performed on FERET database using the proposed method. © 2016 IEEE.