Optimizing Collective Building Management Through a Machine Learning-Based Decision Support System

dc.contributor.author Güvençli, Mert
dc.contributor.author Dağ, Hasan
dc.contributor.author Doğan, Erkan
dc.contributor.author Çakar, Tuna
dc.contributor.author Özyürüyen, Burcu
dc.contributor.author Kiran, Halil
dc.date.accessioned 2024-02-28T12:04:26Z
dc.date.available 2024-02-28T12:04:26Z
dc.date.issued 2023
dc.description.abstract This study presents the design, implementation, and evaluation of a Decision Support System (DSS) developed for Collective Building Management. Given the potential advantages of machine learning techniques in this domain, the research explores how these techniques can be used to improve collective building management. The dataset consists of 824,932 records and 15 attributes, after preprocessing the data to fill in missing values with the median. The random forest algorithm was chosen for model training and achieved a performance rate of 71.2%. This model can be used to optimize decision processes in collective building management. The proposed prototype is notable for its ability to automatically generate operational plans. In conclusion, machine learning-based DSSs are effective tools for collective building management.
dc.identifier.citation Güvençli, M., Kiran,H., Doğa, E., Dağ, H., Özyürüyen, B., Çakar, T. (Eylül 2023). Optimizing collective building management through a machine learning-based decision support system. 4th International Informatics and Software Engineering Conference - Symposium Program. IEEE. pp. 1-4
dc.identifier.doi 10.1109/IISEC59749.2023.10391049
dc.identifier.scopus 2-s2.0-85184656384
dc.identifier.uri https://hdl.handle.net/20.500.11779/2254
dc.identifier.uri https://doi.org/10.1109/IISEC59749.2023.10391049
dc.language.iso en
dc.publisher IEEE
dc.relation.ispartof 2023 4th International Informatics and Software Engineering Conference (IISEC)
dc.rights info:eu-repo/semantics/closedAccess
dc.subject Operational plan automation
dc.subject Random forest algorithm
dc.subject Collective building management
dc.subject Data preprocessing
dc.subject Decision support system (dss)
dc.title Optimizing Collective Building Management Through a Machine Learning-Based Decision Support System
dc.type Conference Object
dspace.entity.type Publication
gdc.author.id Tuna Çakar / 0000-0001-8594-7399
gdc.author.institutional Çakar, Tuna
gdc.bip.impulseclass C5
gdc.bip.influenceclass C5
gdc.bip.popularityclass C5
gdc.coar.access metadata only access
gdc.coar.type text::conference output
gdc.description.department Mühendislik Fakültesi, Bilgisayar Mühendisliği Bölümü
gdc.description.endpage 4
gdc.description.publicationcategory Konferans Öğesi - Uluslararası - Kurum Öğretim Elemanı
gdc.description.startpage 1
gdc.identifier.openalex W4391021621
gdc.index.type Scopus
gdc.oaire.diamondjournal false
gdc.oaire.impulse 0.0
gdc.oaire.influence 2.5942106E-9
gdc.oaire.isgreen false
gdc.oaire.popularity 2.5427536E-9
gdc.oaire.publicfunded false
gdc.openalex.collaboration International
gdc.openalex.fwci 0.0
gdc.openalex.normalizedpercentile 0.22
gdc.opencitations.count 0
gdc.plumx.scopuscites 0
gdc.publishedmonth Eylül
gdc.relation.journal 4th International Informatics and Software Engineering Conference - Symposium Program
gdc.scopus.citedcount 0
gdc.virtual.author Çakar, Tuna
gdc.wos.publishedmonth Eylül
gdc.yokperiod YÖK - 2023-24
relation.isAuthorOfPublication 10f8ce3b-94c2-40f0-9381-0725723768fe
relation.isAuthorOfPublication.latestForDiscovery 10f8ce3b-94c2-40f0-9381-0725723768fe
relation.isOrgUnitOfPublication 05ffa8cd-2a88-4676-8d3b-fc30eba0b7f3
relation.isOrgUnitOfPublication 0d54cd31-4133-46d5-b5cc-280b2c077ac3
relation.isOrgUnitOfPublication a6e60d5c-b0c7-474a-b49b-284dc710c078
relation.isOrgUnitOfPublication.latestForDiscovery 05ffa8cd-2a88-4676-8d3b-fc30eba0b7f3

Files

Original bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
3423424324.pdf
Size:
279.34 KB
Format:
Adobe Portable Document Format
Description:
Proceeding Paper

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.44 KB
Format:
Item-specific license agreed upon to submission
Description: