Solving Xor In Spike Neural Network (SNN) With Component-off-the-shelf

dc.contributor.author Cikikci, S.V.
dc.contributor.author Orek, E.
dc.contributor.author Ozgen, A.K.
dc.contributor.author Yavuz, A.
dc.contributor.author Ayhan, Tuğba
dc.date.accessioned 2025-03-05T20:15:04Z
dc.date.available 2025-03-05T20:15:04Z
dc.date.issued 2024
dc.description.abstract This paper addresses the solution of the XOR problem with Spiking Neural Networks (SNN) in order to improve energy efficiency and computational performance as Moore's Law approaches its limits. SNN is capable of solving nonlinear problems while saving energy by mimicking the working principles of biological neurons. For this purpose, a SNN consisting of 12 neurons was implemented on a breadboard using the Leaky Integrate and Fire (LIF) model. In the input layer of the network, 50 Hz and 100 Hz signals are processed with frequency sensitive filters. With the help of bandpass and low-pass filters, additive and inverting operational amplifiers, the XOR problem is successfully solved. © 2024 IEEE.
dc.identifier.doi 10.1109/ELECO64362.2024.10847089
dc.identifier.isbn 9798331518035
dc.identifier.scopus 2-s2.0-85217883267
dc.identifier.uri https://doi.org/10.1109/ELECO64362.2024.10847089
dc.identifier.uri https://hdl.handle.net/20.500.11779/2512
dc.language.iso tr
dc.publisher Institute of Electrical and Electronics Engineers Inc.
dc.relation.ispartof Electrical-Electronics and Biomedical Engineering Conference, ELECO 2024 - Proceedings -- 2024 Electrical, Electronics and Biomedical Engineering Conference at 15th National Conference on Electrical and Electronics Engineering, ELECO 2024 -- 28 November 2024 through 30 November 2024 -- Bursa -- 206315
dc.rights info:eu-repo/semantics/closedAccess
dc.title Solving Xor In Spike Neural Network (SNN) With Component-off-the-shelf
dc.title.alternative kullanima Hazir Bileşenlerle İǧnecikli Sinir Aǧinda Xor Çözülmesi
dc.type Conference Object
dspace.entity.type Publication
gdc.author.institutional Çıkıkcı, Sevde Vuslat
gdc.author.institutional Örek, Eren
gdc.author.institutional Özgen, Ali Kağan
gdc.author.institutional Ayhan, Tuğba
gdc.author.scopusid 59558677400
gdc.author.scopusid 59558430500
gdc.author.scopusid 59558304800
gdc.author.scopusid 59558177200
gdc.author.scopusid 36052413700
gdc.bip.impulseclass C5
gdc.bip.influenceclass C5
gdc.bip.popularityclass C5
gdc.coar.access metadata only access
gdc.coar.type text::conference output
gdc.description.department Mühendislik Fakültesi, Elektrik Elektronik Mühendisligi Bölümü
gdc.description.endpage 5
gdc.description.publicationcategory Konferans Öğesi - Uluslararası - Kurum Öğretim Elemanı
gdc.description.startpage 1
gdc.identifier.openalex W4406728888
gdc.index.type Scopus
gdc.oaire.diamondjournal false
gdc.oaire.impulse 0.0
gdc.oaire.influence 2.5942106E-9
gdc.oaire.isgreen false
gdc.oaire.popularity 2.9478422E-9
gdc.oaire.publicfunded false
gdc.openalex.fwci 0.63877855
gdc.openalex.normalizedpercentile 0.72
gdc.opencitations.count 0
gdc.plumx.scopuscites 1
gdc.publishedmonth Temmuz
gdc.scopus.citedcount 1
gdc.wos.publishedmonth Temmuz
gdc.yokperiod YÖK - 2023-24
relation.isOrgUnitOfPublication a6e60d5c-b0c7-474a-b49b-284dc710c078
relation.isOrgUnitOfPublication.latestForDiscovery a6e60d5c-b0c7-474a-b49b-284dc710c078

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
1111.pdf
Size:
893.95 KB
Format:
Adobe Portable Document Format