A Novel Genetic Algorithm-Based Improvement Model for Online Communities and Trust Networks

dc.contributor.author Bekmezci, ilker
dc.contributor.author Cimen, Egemen Berkic
dc.contributor.author Ermiş, Murat
dc.date.accessioned 2020-09-04T19:35:13Z
dc.date.available 2020-09-04T19:35:13Z
dc.date.issued 2020
dc.description.abstract Social network analysis offers an understanding of our modern world, and it affords the ability to represent, analyze and even simulate complex structures. While an unweighted model can be used for online communities, trust or friendship networks should be analyzed with weighted models. To analyze social networks, it is essential to produce realistic social models. However, there are serious differences between social network models and real-life data in terms of their fundamental statistical parameters. In this paper, a genetic algorithm (GA)-based social network improvement method is proposed to produce social networks more similar to real-life data sets. First, it creates a social model based on existing studies in the literature, and then it improves the model with the proposed GA-based approach based on the similarity of the average degree, the k-nearest neighbor, the clustering coefficient, degree distribution and link overlap. This study can be used to model the structural and statistical properties of large-scale societies more realistically. The performance results show that our approach can reduce the dissimilarity between the created social networks and the real-life data sets in terms of their primary statistical properties. It has been shown that the proposed GA-based approach can be used effectively not only in unweighted networks but also in weighted networks.
dc.identifier.citation Bekmezci, I., Ermis, M., & Cimen, E. B. (August 06, 2020). A novel genetic algorithm-based improvement model for online communities and trust networks. Journal of Intelligent & Fuzzy Systems, pp. 1-12. DOI: https://doi.org/10.3233/JIFS-200563
dc.identifier.doi 10.3233/JIFS-200563
dc.identifier.issn 1064-1246
dc.identifier.issn 1875-8967
dc.identifier.scopus 2-s2.0-85099025624
dc.identifier.uri https://doi.org/10.3233/JIFS-200563
dc.identifier.uri https://hdl.handle.net/20.500.11779/1354
dc.language.iso en
dc.publisher IOS Press
dc.relation.ispartof Journal of Intelligent & Fuzzy Systems
dc.rights info:eu-repo/semantics/closedAccess
dc.subject Trust network
dc.subject Genetic algorithm
dc.subject Social network modeling
dc.subject Online communities
dc.title A Novel Genetic Algorithm-Based Improvement Model for Online Communities and Trust Networks
dc.type Article
dspace.entity.type Publication
gdc.author.id İlker Bekmezci / 0000-0002-9744-9052
gdc.author.institutional Bekmezci, İlker
gdc.bip.impulseclass C5
gdc.bip.influenceclass C5
gdc.bip.popularityclass C5
gdc.coar.access metadata only access
gdc.coar.type text::journal::journal article
gdc.description.department Mühendislik Fakültesi, Bilgisayar Mühendisliği Bölümü
gdc.description.endpage 1608
gdc.description.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı
gdc.description.scopusquality Q2
gdc.description.startpage 1-12
gdc.description.volume 40
gdc.description.woscitationindex Science Citation Index Expanded - Social Science Citation Index
gdc.description.wosquality Q4
gdc.identifier.openalex W3048402764
gdc.identifier.wos WOS:000606807200104
gdc.index.type WoS
gdc.index.type Scopus
gdc.oaire.diamondjournal false
gdc.oaire.impulse 1.0
gdc.oaire.influence 2.7035405E-9
gdc.oaire.isgreen false
gdc.oaire.keywords Trust Network
gdc.oaire.keywords Genetic Algorithm
gdc.oaire.keywords Social Network Modeling
gdc.oaire.keywords 006
gdc.oaire.keywords Online Communities
gdc.oaire.popularity 2.8696396E-9
gdc.oaire.publicfunded false
gdc.oaire.sciencefields 0301 basic medicine
gdc.oaire.sciencefields 0303 health sciences
gdc.oaire.sciencefields 03 medical and health sciences
gdc.openalex.collaboration National
gdc.openalex.fwci 0.27226096
gdc.openalex.normalizedpercentile 0.52
gdc.opencitations.count 1
gdc.plumx.crossrefcites 1
gdc.plumx.mendeley 3
gdc.plumx.scopuscites 1
gdc.publishedmonth Ağustos
gdc.scopus.citedcount 1
gdc.virtual.author Bekmezci, İlker
gdc.wos.citedcount 1
gdc.wos.collaboration Uluslararası işbirliği ile yapılmayan - HAYIR
gdc.wos.documenttype Article
gdc.wos.indexdate 2021
gdc.wos.publishedmonth Ağustos
gdc.yokperiod YÖK - 2019-20
relation.isAuthorOfPublication 94661dac-781e-47a4-8065-0ff605e88c43
relation.isAuthorOfPublication.latestForDiscovery 94661dac-781e-47a4-8065-0ff605e88c43
relation.isOrgUnitOfPublication 05ffa8cd-2a88-4676-8d3b-fc30eba0b7f3
relation.isOrgUnitOfPublication 0d54cd31-4133-46d5-b5cc-280b2c077ac3
relation.isOrgUnitOfPublication a6e60d5c-b0c7-474a-b49b-284dc710c078
relation.isOrgUnitOfPublication.latestForDiscovery 05ffa8cd-2a88-4676-8d3b-fc30eba0b7f3

Files

Original bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
A novel genetic.pdf
Size:
542.25 KB
Format:
Adobe Portable Document Format
Description:
Full Text - Article

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.44 KB
Format:
Item-specific license agreed upon to submission
Description: