System-On Based Driver Drowsiness Detection and Warning System

dc.contributor.author Yazici, Berkay
dc.contributor.author Ayhan, Tuba
dc.contributor.author Özdemir, Arda
dc.date.accessioned 2023-03-06T06:53:18Z
dc.date.available 2023-03-06T06:53:18Z
dc.date.issued 2022
dc.description.abstract The aim of this project is to detect the drowsiness level of the driver in the vehicle, to warn the driver and to prevent possible accidents. Percentage Eye Closure (PERCLOS) and Convolutional Neural Network (CNN) are used to detect drowsiness. The system is implemented on Xilinx PYNQ-Z2 development board. The system is tested under real world conditions in real time. A high accuracy rate of 92% and a fast working system with 0.8 s is achieved. A speaker is activated to warn the driver when drowsiness is detected. Moreover, the drowsiness information is sent to the cloud by using a Wi-Fi module.
dc.identifier.citation Yazici, B., Ozdemir, A., & Ayhan, T. (2022). System-on-Chip Based Driver Drowsiness Detection and Warning System. 2022 Innovations in Intelligent Systems and Applications Conference (ASYU). https://doi.org/10.1109/asyu56188.2022.9925481?
dc.identifier.doi 10.1109/ASYU56188.2022.9925481
dc.identifier.isbn 9781670000000
dc.identifier.scopus 2-s2.0-85142701323
dc.identifier.uri https://doi.org/10.1109/asyu56188.2022.9925481
dc.identifier.uri https://hdl.handle.net/20.500.11779/1917
dc.language.iso en
dc.publisher IEEE
dc.relation.ispartof 2022 Innovations in Intelligent Systems and Applications Conference (ASYU)
dc.rights info:eu-repo/semantics/openAccess
dc.subject Soc
dc.subject Machine learning
dc.subject Driver drowsiness detection
dc.subject Artificial intelligence
dc.title System-On Based Driver Drowsiness Detection and Warning System
dc.type Conference Object
dspace.entity.type Publication
gdc.author.id Ayhan, Tuba/ 0000-0002-1447-0770
gdc.author.institutional Ayhan,Tuba
gdc.bip.impulseclass C5
gdc.bip.influenceclass C5
gdc.bip.popularityclass C4
gdc.coar.access open access
gdc.coar.type text::conference output
gdc.description.department Mühendislik Fakültesi, Makine Mühendisligi Bölümü
gdc.description.endpage 5
gdc.description.publicationcategory Konferans Öğesi - Ulusal - Kurum Öğretim Elemanı
gdc.description.startpage 1
gdc.identifier.openalex W4312343902
gdc.index.type Scopus
gdc.oaire.diamondjournal false
gdc.oaire.impulse 4.0
gdc.oaire.influence 2.949408E-9
gdc.oaire.isgreen true
gdc.oaire.keywords Artificial intelligence
gdc.oaire.keywords machine learning
gdc.oaire.keywords SoC
gdc.oaire.keywords driver drowsiness detection
gdc.oaire.popularity 6.0105005E-9
gdc.oaire.publicfunded false
gdc.oaire.sciencefields 0301 basic medicine
gdc.oaire.sciencefields 0303 health sciences
gdc.oaire.sciencefields 03 medical and health sciences
gdc.openalex.collaboration National
gdc.openalex.fwci 0.81131163
gdc.openalex.normalizedpercentile 0.71
gdc.opencitations.count 0
gdc.plumx.mendeley 5
gdc.plumx.scopuscites 5
gdc.publishedmonth Eylül
gdc.relation.journal 2022 Innovations in Intelligent Systems and Applications Conference (ASYU)
gdc.scopus.citedcount 5
gdc.virtual.author Ayhan, Tuba
gdc.wos.publishedmonth Eylül
gdc.yokperiod YÖK - 2021-22
relation.isAuthorOfPublication 9037b64d-9c1a-4e25-bbe0-e1a9569d0654
relation.isAuthorOfPublication.latestForDiscovery 9037b64d-9c1a-4e25-bbe0-e1a9569d0654
relation.isOrgUnitOfPublication de19334f-6a5b-4f7b-9410-9433c48d1e5a
relation.isOrgUnitOfPublication 0d54cd31-4133-46d5-b5cc-280b2c077ac3
relation.isOrgUnitOfPublication a6e60d5c-b0c7-474a-b49b-284dc710c078
relation.isOrgUnitOfPublication.latestForDiscovery de19334f-6a5b-4f7b-9410-9433c48d1e5a

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
System-on-Chip_Based_Driver_Drowsiness_Detection_and_Warning_System.pdf
Size:
414.38 KB
Format:
Adobe Portable Document Format
Description:
Full Text - Article

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
0 B
Format:
Item-specific license agreed upon to submission
Description: