Development of an Equivalent Shell Finite Element for Modelling Damped Multi-Layered Composite Structures

dc.contributor.author Şanlıtürk, Kenan Y.
dc.contributor.author Özer, Mehmet Sait
dc.contributor.author Körük, Hasan
dc.date.accessioned 2020-09-25T10:57:02Z
dc.date.available 2020-09-25T10:57:02Z
dc.date.issued 2020
dc.description.abstract A new equivalent shell finite element (FE) for modelling damped multi-layered structures is presented in this study. The method used for developing the new FE for such structures is based on the idea that the strain energy of the equivalent single-layer FE must be equal to the sum of the strain energies of individual layers. The so-called energy coefficients are defined for this purpose for the extensional, bending and shear deformations of the composite structure. These coefficients are then determined and used as correction multipliers during stacking the elemental matrices of individual layers. Two approaches, based on second-order strain or stress distribution assumption through the composite thickness, are investigated for deriving the shear energy coefficients. The damping capability of the FE developed here originates from using complex Young's modulus to define the material properties of individual layers. The resulting equivalent single-layer shell element with four nodes has six degrees-of-freedom per node. The accuracy, advantages and limitations of the composite FE developed in this work are investigated using experimental as well as theoretical results. In the light of the finding of these investigations, further enhancement in the formulation is made by also utilising a new shear correction factor for the individual layers in the equivalent shell element. Final results for free- and constrained-layered structures confirm that the equivalent shell FE developed here can be used effectively for the prediction of the modal properties of damped multi-layered structures.
dc.identifier.citation Ozer, M. S., Koruk, H., & Sanliturk, K. Y. (2020). Development of an equivalent shell finite element for modelling damped multi-layered composite structures. Composite Structures, Volume 254, 112828, 2020
dc.identifier.doi 10.1016/j.compstruct.2020.112828
dc.identifier.issn 1879-1085
dc.identifier.issn 0263-8223
dc.identifier.scopus 2-s2.0-85089950961
dc.identifier.uri https://doi.org/10.1016/j.compstruct.2020.112828
dc.identifier.uri https://hdl.handle.net/20.500.11779/1360
dc.language.iso en
dc.publisher Elsevier
dc.relation.ispartof Composite Structures
dc.rights info:eu-repo/semantics/closedAccess
dc.subject Free-layer damping
dc.subject Finite element method
dc.subject Composite structure
dc.subject Complex eigenvalue problem
dc.subject Constrained-layer damping
dc.subject Equivalent single layer
dc.subject Finite element
dc.subject Elastic moduli
dc.subject Degrees of freedom (mechanics)
dc.title Development of an Equivalent Shell Finite Element for Modelling Damped Multi-Layered Composite Structures
dc.type Article
dspace.entity.type Publication
gdc.author.id Hasan Körük / 0000-0003-4189-6678
gdc.author.institutional Körük, Hasan
gdc.bip.impulseclass C5
gdc.bip.influenceclass C5
gdc.bip.popularityclass C4
gdc.coar.access metadata only access
gdc.coar.type text::journal::journal article
gdc.description.department Mühendislik Fakültesi, Makine Mühendisliği Bölümü
gdc.description.endpage 1-16
gdc.description.issue 254
gdc.description.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı
gdc.description.scopusquality Q1
gdc.description.startpage 112828
gdc.description.volume 254
gdc.description.woscitationindex Science Citation Index Expanded
gdc.description.wosquality Q1
gdc.identifier.openalex W3048878984
gdc.identifier.wos WOS:000579724400017
gdc.index.type WoS
gdc.index.type Scopus
gdc.oaire.diamondjournal false
gdc.oaire.impulse 3.0
gdc.oaire.influence 2.9040648E-9
gdc.oaire.isgreen false
gdc.oaire.popularity 7.37023E-9
gdc.oaire.publicfunded false
gdc.oaire.sciencefields 0203 mechanical engineering
gdc.oaire.sciencefields 02 engineering and technology
gdc.oaire.sciencefields 0210 nano-technology
gdc.openalex.collaboration National
gdc.openalex.fwci 0.61174848
gdc.openalex.normalizedpercentile 0.62
gdc.opencitations.count 6
gdc.plumx.crossrefcites 9
gdc.plumx.mendeley 6
gdc.plumx.scopuscites 11
gdc.publishedmonth Aralık
gdc.scopus.citedcount 11
gdc.virtual.author Körük, Hasan
gdc.wos.citedcount 8
gdc.wos.collaboration Uluslararası işbirliği ile yapılmayan - HAYIR
gdc.wos.documenttype Article
gdc.wos.indexdate 2020
gdc.wos.publishedmonth Aralık
gdc.yokperiod YÖK - 2020-21
relation.isAuthorOfPublication 744d844c-212d-42fc-9d03-6d2657e550c3
relation.isAuthorOfPublication.latestForDiscovery 744d844c-212d-42fc-9d03-6d2657e550c3
relation.isOrgUnitOfPublication 00b4b5da-2140-4d4a-a2b0-9c4ae142ea53
relation.isOrgUnitOfPublication 0d54cd31-4133-46d5-b5cc-280b2c077ac3
relation.isOrgUnitOfPublication a6e60d5c-b0c7-474a-b49b-284dc710c078
relation.isOrgUnitOfPublication.latestForDiscovery 00b4b5da-2140-4d4a-a2b0-9c4ae142ea53

Files

Original bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
Ozer-2020-Development-of-an-equivalent-shell-.pdf
Size:
2.74 MB
Format:
Adobe Portable Document Format
Description:
Full Text - Article

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.44 KB
Format:
Item-specific license agreed upon to submission
Description: