A New Benchmark Dataset for P300 Erp-Based Bci Applications

dc.contributor.author Çakar, Tuna
dc.contributor.author Özkan, Hüseyin
dc.contributor.author Musellim, Serkan
dc.contributor.author Arslan, Suayb S.
dc.contributor.author Yağan, Mehmet
dc.contributor.author Alp, Nihan
dc.date.accessioned 2023-10-18T12:06:14Z
dc.date.available 2023-10-18T12:06:14Z
dc.date.issued 2023
dc.description Acknowledgment This work was supported by The Scientific and Technological Research Council (TUBITAK) of Turkey under Contract 118E268.
dc.description Scientific and Technological Research Council (TUBITAK) of Turkey [118E268]
dc.description.abstract Because of its non-invasive nature, one of the most commonly used event-related potentials in brain -computer interface (BCI) system designs is the P300 electroencephalogram (EEG) signal. The fact that the P300 response can easily be stimulated and measured is particularly important for participants with severe motor disabilities. In order to train and test P300-based BCI speller systems in more realistic high-speed settings, there is a pressing need for a large and challenging benchmark dataset. Various datasets already exist in the literature but most of them are not publicly available, and they either have a limited number of participants or utilize relatively long stimulus duration (SD) and inter-stimulus intervals (ISI). They are also typically based on a 36 target (6 x 6) character matrix. The use of long ISI, in particular, not only reduces the speed and the information transfer rates (ITRs) but also oversimplifies the P300 detection. This leaves a limited challenge to state-of-the-art machine learning and signal processing algorithms. In fact, near-perfect P300 classification accuracies are reported with the existing datasets. Therefore, one certainly needs a large-scale dataset with challenging settings to fully exploit the recent advancements in algorithm design (machine learning and signal processing) and achieve high-performance speller results. To this end, in this article we introduce a new freely-and publicly-accessible P300 dataset obtained using 32-channel EEG, in the hope that it will lead to new research findings and eventually more efficient BCI designs. The introduced dataset comprises 18 participants performing a 40 -target (5 x 8) cued-spelling task, with reduced SD (66.6 ms) and ISI (33.3 ms) for fast spelling. We have also processed, analyzed, and character-classified the introduced dataset and we presented the accuracy and ITR results as a benchmark. The introduced dataset and the codes of our experiments are publicly accessible at https://data .mendeley.com /datasets /vyczny2r4w.(c) 2023 Elsevier Inc. All rights reserved.
dc.identifier.citation Yağan, M., Musellim, S., Arslan, S. S., Çakar, T., Alp, N., & Ozkan, H. (2023). A new benchmark dataset for P300 ERP-based BCI applications. Digital Signal Processing, 135, 103950.
dc.identifier.doi 10.1016/j.dsp.2023.103950
dc.identifier.issn 1095-4333
dc.identifier.issn 1051-2004
dc.identifier.scopus 2-s2.0-85149907353
dc.identifier.uri https://doi.org/10.1016/j.dsp.2023.103950
dc.identifier.uri https://hdl.handle.net/20.500.11779/1986
dc.language.iso en
dc.publisher Academic Press Inc Elsevier Science
dc.relation.ispartof Digital Signal Processing
dc.rights info:eu-repo/semantics/closedAccess
dc.subject Brain-computer-interface
dc.subject Brain computer interface
dc.subject Electroencephalogram
dc.subject People
dc.subject Speller
dc.subject Event related potential
dc.subject Event-related potentials
dc.subject Benchmark dataset
dc.title A New Benchmark Dataset for P300 Erp-Based Bci Applications
dc.type Article
dspace.entity.type Publication
gdc.author.institutional Arslan, Şuayb Şefik
gdc.bip.impulseclass C5
gdc.bip.influenceclass C5
gdc.bip.popularityclass C5
gdc.coar.access metadata only access
gdc.coar.type text::journal::journal article
gdc.description.department Mühendislik Fakültesi, Bilgisayar Mühendisliği Bölümü
gdc.description.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı
gdc.description.scopusquality Q2
gdc.description.startpage 103950
gdc.description.volume 135
gdc.description.woscitationindex Science Citation Index Expanded
gdc.description.wosquality Q2
gdc.identifier.openalex W4319335658
gdc.identifier.wos WOS:000946735800001
gdc.index.type WoS
gdc.index.type Scopus
gdc.oaire.diamondjournal false
gdc.oaire.impulse 0.0
gdc.oaire.influence 2.5942106E-9
gdc.oaire.isgreen true
gdc.oaire.keywords 006
gdc.oaire.popularity 2.5427536E-9
gdc.oaire.publicfunded false
gdc.oaire.sciencefields 03 medical and health sciences
gdc.oaire.sciencefields 0302 clinical medicine
gdc.oaire.sciencefields 0206 medical engineering
gdc.oaire.sciencefields 02 engineering and technology
gdc.openalex.collaboration International
gdc.openalex.fwci 0.0
gdc.openalex.normalizedpercentile 0.01
gdc.opencitations.count 0
gdc.plumx.mendeley 22
gdc.plumx.scopuscites 0
gdc.publishedmonth Nisan
gdc.relation.journal Digital Signal Processing
gdc.scopus.citedcount 0
gdc.virtual.author Çakar, Tuna
gdc.virtual.author Arslan, Şefik Şuayb
gdc.wos.citedcount 0
gdc.wos.collaboration Uluslararası işbirliği ile yapılan - EVET
gdc.wos.documenttype article
gdc.wos.indexdate 2023
gdc.wos.publishedmonth Nisan
gdc.yokperiod YÖK - 2022-23
relation.isAuthorOfPublication 10f8ce3b-94c2-40f0-9381-0725723768fe
relation.isAuthorOfPublication 37152966-5384-4fd7-a0dc-34d1dd8bdc7f
relation.isAuthorOfPublication.latestForDiscovery 10f8ce3b-94c2-40f0-9381-0725723768fe
relation.isOrgUnitOfPublication 05ffa8cd-2a88-4676-8d3b-fc30eba0b7f3
relation.isOrgUnitOfPublication 0d54cd31-4133-46d5-b5cc-280b2c077ac3
relation.isOrgUnitOfPublication a6e60d5c-b0c7-474a-b49b-284dc710c078
relation.isOrgUnitOfPublication.latestForDiscovery 05ffa8cd-2a88-4676-8d3b-fc30eba0b7f3

Files

Original bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
1-s2.0-S1051200423000453-main.pdf
Size:
1.4 MB
Format:
Adobe Portable Document Format
Description:
Full Text- Article

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
0 B
Format:
Item-specific license agreed upon to submission
Description: