An Evaluation of Recent Neural Sequence Tagging Models in Turkish Named Entity Recognition
| dc.contributor.author | Makaroğlu, Didem | |
| dc.contributor.author | Demir, Şeniz | |
| dc.contributor.author | Aras, Gizem | |
| dc.contributor.author | Çakır, Altan | |
| dc.date.accessioned | 2021-07-27T10:47:43Z | |
| dc.date.available | 2021-07-27T10:47:43Z | |
| dc.date.issued | 2021 | |
| dc.description.abstract | Named entity recognition (NER) is an extensively studied task that extracts and classifies named entities in a text. NER is crucial not only in downstream language processing applications such as relation extraction and question answering but also in large scale big data operations such as real-time analysis of online digital media content. Recent research efforts on Turkish, a less studied language with morphologically rich nature, have demonstrated the effectiveness of neural architectures on well-formed texts and yielded state-of-the art results by formulating the task as a sequence tagging problem. In this work, we empirically investigate the use of recent neural architectures (Bidirectional long short-term memory (BiLSTM) and Transformer-based networks) proposed for Turkish NER tagging in the same setting. Our results demonstrate that transformer-based networks which can model long-range context overcome the limitations of BiLSTM networks where different input features at the character, subword, and word levels are utilized. We also propose a transformer-based network with a conditional random field (CRF) layer that leads to the state-of-the-art result (95.95% f-measure) on a common dataset. Our study contributes to the literature that quantifies the impact of transfer learning on processing morphologically rich languages. | |
| dc.identifier.doi | 10.1016/j.eswa.2021.115049 | |
| dc.identifier.issn | 0957-4174 | |
| dc.identifier.scopus | 2-s2.0-85107884455 | |
| dc.identifier.uri | https://hdl.handle.net/20.500.11779/1519 | |
| dc.identifier.uri | https://doi.org/10.1016/j.eswa.2021.115049 | |
| dc.language.iso | en | |
| dc.publisher | Elsevier | |
| dc.relation.ispartof | Expert Systems with Applications | |
| dc.rights | info:eu-repo/semantics/openAccess | |
| dc.subject | Turkish | |
| dc.subject | Named entity recognition | |
| dc.subject | Transfer learning | |
| dc.subject | Digital media industry | |
| dc.subject | Crf | |
| dc.title | An Evaluation of Recent Neural Sequence Tagging Models in Turkish Named Entity Recognition | |
| dc.type | Article | |
| dspace.entity.type | Publication | |
| gdc.author.id | Yazar ID | |
| gdc.author.institutional | Demir, Şeniz | |
| gdc.bip.impulseclass | C4 | |
| gdc.bip.influenceclass | C4 | |
| gdc.bip.popularityclass | C4 | |
| gdc.coar.access | open access | |
| gdc.coar.type | text::journal::journal article | |
| gdc.description.department | Mühendislik Fakültesi, Bilgisayar Mühendisliği Bölümü | |
| gdc.description.endpage | 11 | |
| gdc.description.issue | 15 | |
| gdc.description.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | |
| gdc.description.scopusquality | Q1 | |
| gdc.description.startpage | 1 | |
| gdc.description.volume | 182 | |
| gdc.description.woscitationindex | Science Citation Index Expanded | |
| gdc.description.wosquality | Q1 | |
| gdc.identifier.openalex | W3025222916 | |
| gdc.identifier.wos | WOS:000688460900011 | |
| gdc.index.type | WoS | |
| gdc.index.type | Scopus | |
| gdc.oaire.accesstype | HYBRID | |
| gdc.oaire.diamondjournal | false | |
| gdc.oaire.impulse | 25.0 | |
| gdc.oaire.influence | 4.3694306E-9 | |
| gdc.oaire.isgreen | true | |
| gdc.oaire.keywords | Named entity recognition | |
| gdc.oaire.keywords | FOS: Computer and information sciences | |
| gdc.oaire.keywords | Computer Science - Machine Learning | |
| gdc.oaire.keywords | Computer Science - Computation and Language | |
| gdc.oaire.keywords | Digital media industry | |
| gdc.oaire.keywords | Turkish | |
| gdc.oaire.keywords | CRF | |
| gdc.oaire.keywords | Computation and Language (cs.CL) | |
| gdc.oaire.keywords | Transfer learning | |
| gdc.oaire.keywords | Machine Learning (cs.LG) | |
| gdc.oaire.popularity | 2.5693017E-8 | |
| gdc.oaire.publicfunded | false | |
| gdc.oaire.sciencefields | 0202 electrical engineering, electronic engineering, information engineering | |
| gdc.oaire.sciencefields | 02 engineering and technology | |
| gdc.openalex.collaboration | National | |
| gdc.openalex.fwci | 0.28220715 | |
| gdc.openalex.normalizedpercentile | 0.6 | |
| gdc.opencitations.count | 25 | |
| gdc.plumx.crossrefcites | 20 | |
| gdc.plumx.mendeley | 46 | |
| gdc.plumx.scopuscites | 28 | |
| gdc.publishedmonth | Kasım | |
| gdc.relation.journal | Expert Systems with Applications | |
| gdc.scopus.citedcount | 28 | |
| gdc.virtual.author | Demir, Şeniz | |
| gdc.wos.citedcount | 20 | |
| gdc.wos.collaboration | Uluslararası işbirliği ile yapılmayan - HAYIR | |
| gdc.wos.documenttype | Article | |
| gdc.wos.indexdate | 2021 | |
| gdc.wos.publishedmonth | Kasım | |
| gdc.yokperiod | YÖK - 2021-22 | |
| relation.isAuthorOfPublication | 93fa0200-13f7-446a-bdc2-118401cab062 | |
| relation.isAuthorOfPublication.latestForDiscovery | 93fa0200-13f7-446a-bdc2-118401cab062 | |
| relation.isOrgUnitOfPublication | 05ffa8cd-2a88-4676-8d3b-fc30eba0b7f3 | |
| relation.isOrgUnitOfPublication | 0d54cd31-4133-46d5-b5cc-280b2c077ac3 | |
| relation.isOrgUnitOfPublication | a6e60d5c-b0c7-474a-b49b-284dc710c078 | |
| relation.isOrgUnitOfPublication.latestForDiscovery | 05ffa8cd-2a88-4676-8d3b-fc30eba0b7f3 |
Files
Original bundle
1 - 1 of 1
Loading...
- Name:
- 1-s2.0-S0957417421004905-main.pdf
- Size:
- 1.15 MB
- Format:
- Adobe Portable Document Format
- Description:
- Full Text / Tam Metin
License bundle
1 - 1 of 1
No Thumbnail Available
- Name:
- license.txt
- Size:
- 1.44 KB
- Format:
- Item-specific license agreed upon to submission
- Description:
