An Evaluation of Recent Neural Sequence Tagging Models in Turkish Named Entity Recognition

dc.contributor.author Makaroğlu, Didem
dc.contributor.author Demir, Şeniz
dc.contributor.author Aras, Gizem
dc.contributor.author Çakır, Altan
dc.date.accessioned 2021-07-27T10:47:43Z
dc.date.available 2021-07-27T10:47:43Z
dc.date.issued 2021
dc.description.abstract Named entity recognition (NER) is an extensively studied task that extracts and classifies named entities in a text. NER is crucial not only in downstream language processing applications such as relation extraction and question answering but also in large scale big data operations such as real-time analysis of online digital media content. Recent research efforts on Turkish, a less studied language with morphologically rich nature, have demonstrated the effectiveness of neural architectures on well-formed texts and yielded state-of-the art results by formulating the task as a sequence tagging problem. In this work, we empirically investigate the use of recent neural architectures (Bidirectional long short-term memory (BiLSTM) and Transformer-based networks) proposed for Turkish NER tagging in the same setting. Our results demonstrate that transformer-based networks which can model long-range context overcome the limitations of BiLSTM networks where different input features at the character, subword, and word levels are utilized. We also propose a transformer-based network with a conditional random field (CRF) layer that leads to the state-of-the-art result (95.95% f-measure) on a common dataset. Our study contributes to the literature that quantifies the impact of transfer learning on processing morphologically rich languages.
dc.identifier.doi 10.1016/j.eswa.2021.115049
dc.identifier.issn 0957-4174
dc.identifier.scopus 2-s2.0-85107884455
dc.identifier.uri https://hdl.handle.net/20.500.11779/1519
dc.identifier.uri https://doi.org/10.1016/j.eswa.2021.115049
dc.language.iso en
dc.publisher Elsevier
dc.relation.ispartof Expert Systems with Applications
dc.rights info:eu-repo/semantics/openAccess
dc.subject Turkish
dc.subject Named entity recognition
dc.subject Transfer learning
dc.subject Digital media industry
dc.subject Crf
dc.title An Evaluation of Recent Neural Sequence Tagging Models in Turkish Named Entity Recognition
dc.type Article
dspace.entity.type Publication
gdc.author.id Yazar ID
gdc.author.institutional Demir, Şeniz
gdc.bip.impulseclass C4
gdc.bip.influenceclass C4
gdc.bip.popularityclass C4
gdc.coar.access open access
gdc.coar.type text::journal::journal article
gdc.description.department Mühendislik Fakültesi, Bilgisayar Mühendisliği Bölümü
gdc.description.endpage 11
gdc.description.issue 15
gdc.description.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı
gdc.description.scopusquality Q1
gdc.description.startpage 1
gdc.description.volume 182
gdc.description.woscitationindex Science Citation Index Expanded
gdc.description.wosquality Q1
gdc.identifier.openalex W3025222916
gdc.identifier.wos WOS:000688460900011
gdc.index.type WoS
gdc.index.type Scopus
gdc.oaire.accesstype HYBRID
gdc.oaire.diamondjournal false
gdc.oaire.impulse 25.0
gdc.oaire.influence 4.3694306E-9
gdc.oaire.isgreen true
gdc.oaire.keywords Named entity recognition
gdc.oaire.keywords FOS: Computer and information sciences
gdc.oaire.keywords Computer Science - Machine Learning
gdc.oaire.keywords Computer Science - Computation and Language
gdc.oaire.keywords Digital media industry
gdc.oaire.keywords Turkish
gdc.oaire.keywords CRF
gdc.oaire.keywords Computation and Language (cs.CL)
gdc.oaire.keywords Transfer learning
gdc.oaire.keywords Machine Learning (cs.LG)
gdc.oaire.popularity 2.5693017E-8
gdc.oaire.publicfunded false
gdc.oaire.sciencefields 0202 electrical engineering, electronic engineering, information engineering
gdc.oaire.sciencefields 02 engineering and technology
gdc.openalex.collaboration National
gdc.openalex.fwci 0.28220715
gdc.openalex.normalizedpercentile 0.6
gdc.opencitations.count 25
gdc.plumx.crossrefcites 20
gdc.plumx.mendeley 46
gdc.plumx.scopuscites 28
gdc.publishedmonth Kasım
gdc.relation.journal Expert Systems with Applications
gdc.scopus.citedcount 28
gdc.virtual.author Demir, Şeniz
gdc.wos.citedcount 20
gdc.wos.collaboration Uluslararası işbirliği ile yapılmayan - HAYIR
gdc.wos.documenttype Article
gdc.wos.indexdate 2021
gdc.wos.publishedmonth Kasım
gdc.yokperiod YÖK - 2021-22
relation.isAuthorOfPublication 93fa0200-13f7-446a-bdc2-118401cab062
relation.isAuthorOfPublication.latestForDiscovery 93fa0200-13f7-446a-bdc2-118401cab062
relation.isOrgUnitOfPublication 05ffa8cd-2a88-4676-8d3b-fc30eba0b7f3
relation.isOrgUnitOfPublication 0d54cd31-4133-46d5-b5cc-280b2c077ac3
relation.isOrgUnitOfPublication a6e60d5c-b0c7-474a-b49b-284dc710c078
relation.isOrgUnitOfPublication.latestForDiscovery 05ffa8cd-2a88-4676-8d3b-fc30eba0b7f3

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
1-s2.0-S0957417421004905-main.pdf
Size:
1.15 MB
Format:
Adobe Portable Document Format
Description:
Full Text / Tam Metin

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.44 KB
Format:
Item-specific license agreed upon to submission
Description: