Neural Decoding of Brand Perception and Preferences: Understanding Consumer Behavior Through Fnirs and Machine Learning

dc.contributor.author Çakar, Tuna
dc.contributor.author Girisken, Yener
dc.contributor.author Tuna, Esin
dc.contributor.author Filiz, Gozde
dc.contributor.author Drias, Yassine
dc.date.accessioned 2024-09-08T16:52:58Z
dc.date.available 2024-09-08T16:52:58Z
dc.date.issued 2024
dc.description.abstract This research examines the link between consumer brand perceptions and neural activity by employing Functional Near-Infrared Spectroscopy (fNIRS) and machine learning techniques. The study analyzes the neural projections of participants' reactions to brand-associated adjectives, processing data collected from 168 individuals through machine learning algorithms. The findings underscore the significance of the lateral regions of the prefrontal cortex in the decision- making process related to brand perceptions. The aim is to understand how brands are perceived when associated with various adjectives and to develop this understanding through neural patterns using machine learning models. This study demonstrates the potential of integrating neural data with machine learning methods in the field of applied neuroscience.
dc.identifier.doi 10.1109/SIU61531.2024.10601072
dc.identifier.isbn 9798350388978
dc.identifier.isbn 9798350388961
dc.identifier.issn 2165-0608
dc.identifier.scopus 2-s2.0-85200880347
dc.identifier.uri https://doi.org/10.1109/SIU61531.2024.10601072
dc.language.iso tr
dc.publisher Ieee
dc.relation.ispartof 32nd IEEE Signal Processing and Communications Applications Conference (SIU) -- MAY 15-18, 2024 -- Tarsus Univ Campus, Mersin, TURKEY
dc.relation.ispartofseries Signal Processing and Communications Applications Conference
dc.rights info:eu-repo/semantics/closedAccess
dc.subject Functional Near-Infrared Spectroscopy
dc.subject Neural Decoding
dc.subject Brand Perception
dc.subject Machine Learning
dc.subject Neuromarketing
dc.title Neural Decoding of Brand Perception and Preferences: Understanding Consumer Behavior Through Fnirs and Machine Learning
dc.title.alternative Marka Algısı ve Tercihlerinin Nöral Çözümlemesi: fNIRS ve Makine Öğrenimi Kullanılarak Tüketici Davranışlarının Anlaşılması
dc.type Conference Object
dspace.entity.type Publication
gdc.author.id Tuna Çakar / 0000-0001-8594-7399
gdc.author.institutional Çakar, Tuna
gdc.author.institutional Esin, Tuna
gdc.author.institutional Drias, Yassine
gdc.bip.impulseclass C5
gdc.bip.influenceclass C5
gdc.bip.popularityclass C5
gdc.coar.access metadata only access
gdc.coar.type text::conference output
gdc.description.department Mühendislik Fakültesi, Bilgisayar Mühendisliği Bölümü
gdc.description.endpage 4
gdc.description.publicationcategory Konferans Öğesi - Uluslararası - Kurum Öğretim Elemanı
gdc.description.startpage 1
gdc.description.woscitationindex Conference Proceedings Citation Index - Science
gdc.identifier.openalex W4400908454
gdc.identifier.wos WOS:001297894700280
gdc.index.type WoS
gdc.index.type Scopus
gdc.oaire.diamondjournal false
gdc.oaire.impulse 0.0
gdc.oaire.influence 2.5942106E-9
gdc.oaire.isgreen false
gdc.oaire.keywords Brand Perception; Functional near-infrared spectroscopy; Machine Learning; Neural Decoding; Neuromarketing;
gdc.oaire.popularity 2.9478422E-9
gdc.oaire.publicfunded false
gdc.openalex.fwci 0.0
gdc.openalex.normalizedpercentile 0.14
gdc.opencitations.count 0
gdc.plumx.mendeley 2
gdc.plumx.scopuscites 0
gdc.publishedmonth Temmuz
gdc.scopus.citedcount 0
gdc.virtual.author Drias, Yassine
gdc.virtual.author Çakar, Tuna
gdc.wos.citedcount 0
gdc.wos.publishedmonth Temmuz
gdc.yokperiod YÖK - 2023-24
local.message.claim 2024-10-23T16:42:46.385+0300
local.message.claim |rp00139
local.message.claim |submit_approve
local.message.claim |dc_contributor_author
local.message.claim |None
relation.isAuthorOfPublication fc428ec9-7ded-49de-98b3-c32be0d42348
relation.isAuthorOfPublication 10f8ce3b-94c2-40f0-9381-0725723768fe
relation.isAuthorOfPublication.latestForDiscovery fc428ec9-7ded-49de-98b3-c32be0d42348
relation.isOrgUnitOfPublication 05ffa8cd-2a88-4676-8d3b-fc30eba0b7f3
relation.isOrgUnitOfPublication 0d54cd31-4133-46d5-b5cc-280b2c077ac3
relation.isOrgUnitOfPublication a6e60d5c-b0c7-474a-b49b-284dc710c078
relation.isOrgUnitOfPublication.latestForDiscovery 05ffa8cd-2a88-4676-8d3b-fc30eba0b7f3

Files

Original bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
Full Text - Article.pdf
Size:
243.97 KB
Format:
Adobe Portable Document Format