Development of a Knowledge-Based Multimodal Deep Learning System for Automatic Breast Lesion Segmentation and Diagnosis in Mg/Dmr Images

dc.contributor.author Orhan, Gözde
dc.contributor.author Çavuşoğlu, Mustafa
dc.contributor.author Sürmeli, Hulusi Emre
dc.contributor.author Çakar, Tuna
dc.contributor.author Araz, Nusret
dc.contributor.author Bayram, Bülent
dc.date.accessioned 2023-12-13T09:08:18Z
dc.date.available 2023-12-13T09:08:18Z
dc.date.issued 2023
dc.description.abstract Deep learning networks (DLNs) rely on labeled training datasets as their fundamental building blocks. While various databases exist worldwide, there is currently no domestic solution available in our country. This project aims to create a domestic database by automatically segmenting breast lesions in MG/DMR images based on their types and developing a knowledge-based multimodal DL-based integrated computer-aided diagnosis system to analyze the images, thereby providing the system with continuous learning capability. Different brands of devices exist for MG/DMR, necessitating the multimodal operation of image processing/artificial intelligence algorithms. To achieve this goal, the network was trained first, and then prelearned data were transferred to enable the training of data from different networks once accurate results are obtained. The developed system has the potential to enable the automatic detection of breast lesions, ensuring fast and high diagnostic accuracy. Additionally, it might also facilitate the retrospective analysis of patients' periodic check-up results.
dc.identifier.citation Araz, N., Orhan, G., Çavuşoğlu, M., Surmeli, H. E., Bayram, B., & Cakar, T. (2023, September).Development of a knowledge-based multimodal deep learning system for automatic breast lesion segmentation and diagnosis in MG/DMR images In 2023 8th International Conference on Computer Science and Engineering (UBMK). (pp. 578-583).
dc.identifier.doi 10.1109/UBMK59864.2023.10286633
dc.identifier.isbn 9798350340815
dc.identifier.scopus 2-s2.0-85177573924
dc.identifier.uri https://doi.org/10.1109/UBMK59864.2023.10286633
dc.identifier.uri https://hdl.handle.net/20.500.11779/2145
dc.language.iso en
dc.publisher IEEE
dc.relation.ispartof 2023 8th International Conference on Computer Science and Engineering (UBMK)
dc.rights info:eu-repo/semantics/closedAccess
dc.subject Deep learning networks
dc.subject Multimodal image processing
dc.subject Domestic database creation
dc.subject Computer-aided diagnosis
dc.subject Breast lesion segmentation
dc.title Development of a Knowledge-Based Multimodal Deep Learning System for Automatic Breast Lesion Segmentation and Diagnosis in Mg/Dmr Images
dc.type Conference Object
dspace.entity.type Publication
gdc.author.id Tuna Çakar / 0000-0001-8594-7399
gdc.author.institutional Çakar, Tuna
gdc.bip.impulseclass C5
gdc.bip.influenceclass C5
gdc.bip.popularityclass C5
gdc.coar.access metadata only access
gdc.coar.type text::conference output
gdc.description.department Mühendislik Fakültesi, Bilgisayar Mühendisliği Bölümü
gdc.description.endpage 583
gdc.description.publicationcategory Konferans Öğesi - Uluslararası - Kurum Öğretim Elemanı
gdc.description.startpage 578
gdc.identifier.openalex W4387913059
gdc.index.type Scopus
gdc.oaire.diamondjournal false
gdc.oaire.impulse 0.0
gdc.oaire.influence 2.5942106E-9
gdc.oaire.isgreen false
gdc.oaire.popularity 2.5427536E-9
gdc.oaire.publicfunded false
gdc.oaire.sciencefields 0301 basic medicine
gdc.oaire.sciencefields 0303 health sciences
gdc.oaire.sciencefields 03 medical and health sciences
gdc.openalex.collaboration National
gdc.openalex.fwci 0.0
gdc.openalex.normalizedpercentile 0.14
gdc.opencitations.count 0
gdc.plumx.mendeley 2
gdc.plumx.scopuscites 0
gdc.publishedmonth Eylül
gdc.relation.journal 8th International Conference on Computer Science and Engineering - UBMK 2023
gdc.scopus.citedcount 0
gdc.virtual.author Çakar, Tuna
gdc.wos.publishedmonth Eylül
gdc.yokperiod YÖK - 2023-24
relation.isAuthorOfPublication 10f8ce3b-94c2-40f0-9381-0725723768fe
relation.isAuthorOfPublication.latestForDiscovery 10f8ce3b-94c2-40f0-9381-0725723768fe
relation.isOrgUnitOfPublication 05ffa8cd-2a88-4676-8d3b-fc30eba0b7f3
relation.isOrgUnitOfPublication 0d54cd31-4133-46d5-b5cc-280b2c077ac3
relation.isOrgUnitOfPublication a6e60d5c-b0c7-474a-b49b-284dc710c078
relation.isOrgUnitOfPublication.latestForDiscovery 05ffa8cd-2a88-4676-8d3b-fc30eba0b7f3

Files

Original bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
2343724372.pdf
Size:
715.45 KB
Format:
Adobe Portable Document Format
Description:
Proceedings Paper

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.44 KB
Format:
Item-specific license agreed upon to submission
Description: