Customer Segmentation and Churn Prediction via Customer Metrics

dc.contributor.author Bozkan, Tunahan
dc.contributor.author Cakar, Tuna
dc.contributor.author Sayar, Alperen
dc.contributor.author Ertugrul, Seyit
dc.date.accessioned 2022-10-13T11:17:13Z
dc.date.available 2022-10-13T11:17:13Z
dc.date.issued 2022
dc.description.abstract In this study, it is aimed to predict whether customers operating in the factoring sector will continue to trade in the next three months after the last transaction date, using data-driven machine learning models, based on their past transaction movements and their risk, limit and company data. As a result of the models established, Loss Analysis (Churn) of two different customer groups (Real and Legal factory) was carried out. It was estimated by the XGBoost model with an F1 Score of 74% and 77%. Thanks to this modeling, it was aimed to increase the retention rate of customers through special promotions and campaigns to be made to these customer groups, together with the prediction of the customers who will leave. Thanks to the increase in retention rates, a direct contribution to the transaction volume on a company basis was ensured.
dc.identifier.citation Bozkan, T., Çakar, T., Sayar, A., & Ertuğrul, S. (15-18 May 2022). Customer Segmentation and Churn Prediction via Customer Metrics. In 2022 30th Signal Processing and Communications Applications Conference (SIU) (pp. 1-4). IEEE. Safranbolu, Turkey.
dc.identifier.doi 10.1109/SIU55565.2022.9864781
dc.identifier.isbn 9781665450928
dc.identifier.issn 2165-0608
dc.identifier.scopus 2-s2.0-85138736238
dc.identifier.uri https://doi.org/10.1109/SIU55565.2022.9864781
dc.language.iso tr
dc.publisher IEEE
dc.relation.ispartof 30th IEEE Signal Processing and Communications Applications Conference (SIU) -- MAY 15-18, 2022 -- Safranbolu, TURKEY
dc.relation.ispartofseries Signal Processing and Communications Applications Conference
dc.rights info:eu-repo/semantics/openAccess
dc.subject Factoring
dc.subject Churn Analysis
dc.subject Machine Learning
dc.title Customer Segmentation and Churn Prediction via Customer Metrics
dc.title.alternative Müşteri metrikleri üzerinden segmentasyon ve kayıp tahmini
dc.type Conference Object
dspace.entity.type Publication
gdc.author.id Tuna Çakar / 0000-0001-8594-7399
gdc.author.institutional Çakar, Tuna
gdc.bip.impulseclass C5
gdc.bip.influenceclass C5
gdc.bip.popularityclass C5
gdc.coar.access open access
gdc.coar.type text::conference output
gdc.description.department Mühendislik Fakültesi, Bilgisayar Mühendisliği Bölümü
gdc.description.endpage 4
gdc.description.publicationcategory Konferans Öğesi - Uluslararası - Kurum Öğretim Elemanı
gdc.description.startpage 1
gdc.description.woscitationindex Conference Proceedings Citation Index - Science
gdc.identifier.openalex W4293863131
gdc.identifier.wos WOS:001307163400120
gdc.index.type WoS
gdc.index.type Scopus
gdc.oaire.diamondjournal false
gdc.oaire.impulse 0.0
gdc.oaire.influence 2.5942106E-9
gdc.oaire.isgreen false
gdc.oaire.popularity 2.19756E-9
gdc.oaire.publicfunded false
gdc.oaire.sciencefields 0502 economics and business
gdc.oaire.sciencefields 05 social sciences
gdc.openalex.collaboration National
gdc.openalex.fwci 0.51172893
gdc.openalex.normalizedpercentile 0.5
gdc.opencitations.count 0
gdc.plumx.mendeley 5
gdc.plumx.scopuscites 0
gdc.publishedmonth Mayıs
gdc.relation.journal 2022 30th Signal Processing and Communications Applications Conference, SIU 2022
gdc.scopus.citedcount 0
gdc.virtual.author Çakar, Tuna
gdc.wos.citedcount 0
gdc.wos.publishedmonth Mayıs
gdc.yokperiod YÖK - 2021-22
relation.isAuthorOfPublication 10f8ce3b-94c2-40f0-9381-0725723768fe
relation.isAuthorOfPublication.latestForDiscovery 10f8ce3b-94c2-40f0-9381-0725723768fe
relation.isOrgUnitOfPublication 05ffa8cd-2a88-4676-8d3b-fc30eba0b7f3
relation.isOrgUnitOfPublication 0d54cd31-4133-46d5-b5cc-280b2c077ac3
relation.isOrgUnitOfPublication a6e60d5c-b0c7-474a-b49b-284dc710c078
relation.isOrgUnitOfPublication.latestForDiscovery 05ffa8cd-2a88-4676-8d3b-fc30eba0b7f3

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Customer_Segmentation_and_Churn_Prediction_via_Customer_Metrics.pdf
Size:
888.53 KB
Format:
Adobe Portable Document Format
Description:
Conference Paper

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.44 KB
Format:
Item-specific license agreed upon to submission
Description: