Noise Effect on Forecasting

dc.contributor.author Tuncer, Suat
dc.contributor.author Kayan, Ersan
dc.contributor.author Çakar, Tuna
dc.date.accessioned 2023-10-18T12:06:11Z
dc.date.available 2023-10-18T12:06:11Z
dc.date.issued 2023
dc.description.abstract The lack of regulation and liquidity in crypto money markets causes higher volatility compared to other financial markets. This situation increases the noise in price change. The high noise and random walk create a problem that cannot be explained by traditional stochastic financial methods. For this reason, a multi-layered deep learning model with an additive attention layer, which uses a single observation in 10-day sequences, was used in this study. Different transformations are used to reduce the noise of the closing values. As a result of the comparisons made between different approaches, it has been revealed that exponential moving averages, to be used as the value to predict, give better results than other conversions and estimation of the original price, since they explain the price better than simple moving averages and reduce the noise of the original price.
dc.description.sponsorship IEEE,TUBITAK BILGEM,Turkcell
dc.identifier.citation Tuncer, S., Çakar, T., & Kayan, E. (2023, July). Noise Effect on Forecasting. In 2023 31st Signal Processing and Communications Applications Conference (SIU) (pp. 1-4). IEEE.
dc.identifier.doi 10.1109/SIU59756.2023.10223792
dc.identifier.isbn 9798350343557
dc.identifier.issn 2165-0608
dc.identifier.scopus 2-s2.0-85173506781
dc.identifier.uri https://hdl.handle.net/20.500.11779/1959
dc.identifier.uri https://doi.org/10.1109/SIU59756.2023.10223792
dc.language.iso tr
dc.publisher IEEE
dc.relation.ispartof 2023 31st Signal Processing and Communications Applications Conference (SIU)
dc.rights info:eu-repo/semantics/closedAccess
dc.subject Bitcoin
dc.subject Forecasting
dc.subject Noise reduction
dc.subject Deep learning
dc.title Noise Effect on Forecasting
dc.type Conference Object
dspace.entity.type Publication
gdc.author.institutional Çakar, Tuna
gdc.bip.impulseclass C5
gdc.bip.influenceclass C5
gdc.bip.popularityclass C5
gdc.coar.access metadata only access
gdc.coar.type text::conference output
gdc.description.department Mühendislik Fakültesi, Bilgisayar Mühendisliği Bölümü
gdc.description.endpage 4
gdc.description.publicationcategory Konferans Öğesi - Uluslararası - Kurum Öğretim Elemanı
gdc.description.startpage 1
gdc.description.woscitationindex Conference Proceedings Citation Index - Science - Conference Proceedings Citation Index - Social Science & Humanities
gdc.identifier.openalex W4386212435
gdc.identifier.wos WOS:001062571000045
gdc.index.type WoS
gdc.index.type Scopus
gdc.oaire.diamondjournal false
gdc.oaire.impulse 0.0
gdc.oaire.influence 2.5942106E-9
gdc.oaire.isgreen false
gdc.oaire.popularity 2.5427536E-9
gdc.oaire.publicfunded false
gdc.openalex.fwci 0.0
gdc.openalex.normalizedpercentile 0.14
gdc.opencitations.count 0
gdc.plumx.mendeley 2
gdc.plumx.scopuscites 0
gdc.publishedmonth Temmuz
gdc.relation.journal 31st IEEE Conference on Signal Processing and Communications Applications (SIU) -- JUL 05-08, 2023 -- Istanbul Tech Univ, Ayazaga Campus, Istanbul, TURKEY
gdc.relation.journal 2023 31st Signal Processing and Communications Applications Conference, Siu
gdc.scopus.citedcount 0
gdc.virtual.author Çakar, Tuna
gdc.wos.citedcount 0
gdc.wos.collaboration Uluslararası işbirliği ile yapılmayan - HAYIR
gdc.wos.documenttype Proceedings Paper
gdc.wos.indexdate 2023
gdc.wos.publishedmonth Temmuz
gdc.yokperiod YÖK - 2022-23
relation.isAuthorOfPublication 10f8ce3b-94c2-40f0-9381-0725723768fe
relation.isAuthorOfPublication.latestForDiscovery 10f8ce3b-94c2-40f0-9381-0725723768fe
relation.isOrgUnitOfPublication 05ffa8cd-2a88-4676-8d3b-fc30eba0b7f3
relation.isOrgUnitOfPublication 0d54cd31-4133-46d5-b5cc-280b2c077ac3
relation.isOrgUnitOfPublication a6e60d5c-b0c7-474a-b49b-284dc710c078
relation.isOrgUnitOfPublication.latestForDiscovery 05ffa8cd-2a88-4676-8d3b-fc30eba0b7f3

Files

Original bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
Noise_Effect_on_Forecasting.pdf
Size:
732.33 KB
Format:
Adobe Portable Document Format
Description:
Full Text- Article

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
0 B
Format:
Item-specific license agreed upon to submission
Description: