Qubo Formulations and Characterization of Penalty Parameters for the Multi-Knapsack Problem

dc.contributor.author Guney, Evren
dc.contributor.author Ehrenthal, Joachim
dc.contributor.author Hanne, Thomas
dc.date.accessioned 2025-04-05T20:57:43Z
dc.date.available 2025-04-05T20:57:43Z
dc.date.issued 2025
dc.description.abstract The Multi-Knapsack Problem (MKP) is a fundamental challenge in operations research and combinatorial optimization. Quantum computing introduces new possibilities for solving MKP using Quadratic Unconstrained Binary Optimization (QUBO) models. However, a key challenge in QUBO formulations is the selection of penalty parameters, which directly influence solution feasibility and algorithm performance. In this work, we develop QUBO formulations for two MKP variants-the Multidimensional Knapsack Problem (MDKP) and the Multiple Knapsack Problem (MUKP)-and provide an algebraic characterization of their penalty parameters. We systematically evaluate their impact through quantum simulation experiments and compare the performance of the two leading quantum optimization approaches: Quantum Approximate Optimization Algorithm (QAOA) and quantum annealing, alongside a state-of-the-art classical solver. Our results indicate that while classical solvers remain superior, careful tuning of penalty parameters has a strong impact on quantum optimization outcomes. QAOA is highly sensitive to parameter choices, whereas quantum annealing produces more stable results on small to mid-sized instances. Further, our results reveal that MDKP instances can maintain feasibility at penalty values below theoretical bounds, while MUKP instances show greater sensitivity to penalty reductions. Finally, we outline directions for future research in solving MKP, including adaptive penalty parameter tuning, hybrid quantum-classical approaches, and practical optimization strategies for QAOA, as well as real-hardware evaluations.
dc.description.sponsorship Scientific and Technological Research Council of Turkiye (TUBITAK)
dc.description.sponsorship Evren Guney acknowledges the support of the Scientific and Technological Research Council of Turkiye (TUBITAK), which contributed to the development of this research
dc.identifier.doi 10.1109/ACCESS.2025.3550788
dc.identifier.issn 2169-3536
dc.identifier.scopus 2-s2.0-105001091746
dc.identifier.uri https://doi.org/10.1109/ACCESS.2025.3550788
dc.language.iso en
dc.publisher IEEE-Inst Electrical Electronics Engineers Inc
dc.relation.ispartof IEEE Access
dc.rights info:eu-repo/semantics/openAccess
dc.subject Optimization
dc.subject Quantum Computing
dc.subject Logic Gates
dc.subject Quantum Annealing
dc.subject Annealing
dc.subject Qubit
dc.subject Noise
dc.subject Approximation Algorithms
dc.subject Tuning
dc.subject Quantum State
dc.subject Multi-Dimensional Knapsack Problem
dc.subject Multiple Knapsack Problem
dc.subject Quadratic Unconstrained Binary Optimization
dc.subject Quantum Approximate Optimization Algorithm
dc.subject Penalty Parameters
dc.title Qubo Formulations and Characterization of Penalty Parameters for the Multi-Knapsack Problem
dc.type Article
dspace.entity.type Publication
gdc.author.institutional Güney, Evren
gdc.author.scopusid 24080435200
gdc.author.scopusid 55573294200
gdc.author.scopusid 6602279467
gdc.author.wosid Guney, Evren/Ltc-9658-2024
gdc.author.wosid Hanne, Thomas/I-1255-2012
gdc.bip.impulseclass C5
gdc.bip.influenceclass C5
gdc.bip.popularityclass C5
gdc.coar.access open access
gdc.coar.type text::journal::journal article
gdc.description.department Mühendislik Fakültesi, Endüstri Mühendisligi Bölümü
gdc.description.endpage 47098
gdc.description.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı
gdc.description.scopusquality Q1
gdc.description.startpage 47086
gdc.description.volume 13
gdc.description.woscitationindex Science Citation Index Expanded
gdc.description.wosquality Q2
gdc.identifier.openalex W4408358881
gdc.identifier.wos WOS:001448323100029
gdc.index.type WoS
gdc.index.type Scopus
gdc.oaire.accesstype GOLD
gdc.oaire.diamondjournal false
gdc.oaire.impulse 0.0
gdc.oaire.influence 2.5942106E-9
gdc.oaire.isgreen false
gdc.oaire.keywords penalty parameters
gdc.oaire.keywords 330 - Wirtschaft
gdc.oaire.keywords multiple knapsack problem
gdc.oaire.keywords quantum annealing
gdc.oaire.keywords Electrical engineering. Electronics. Nuclear engineering
gdc.oaire.keywords Multi-dimensional knapsack problem
gdc.oaire.keywords quadratic unconstrained binary optimization
gdc.oaire.keywords quantum approximate optimization algorithm
gdc.oaire.keywords TK1-9971
gdc.oaire.popularity 2.0809511E-10
gdc.oaire.publicfunded false
gdc.openalex.collaboration International
gdc.openalex.fwci 10.83069519
gdc.openalex.normalizedpercentile 0.93
gdc.openalex.toppercent TOP 10%
gdc.opencitations.count 0
gdc.plumx.mendeley 2
gdc.plumx.newscount 1
gdc.plumx.scopuscites 1
gdc.publishedmonth Mart
gdc.scopus.citedcount 1
gdc.virtual.author Güney, Evren
gdc.wos.citedcount 1
gdc.wos.publishedmonth Mart
gdc.yokperiod YÖK - 2024-25
relation.isAuthorOfPublication 6cd6fa8d-207e-4ab4-a977-c3a42684f2d1
relation.isAuthorOfPublication.latestForDiscovery 6cd6fa8d-207e-4ab4-a977-c3a42684f2d1
relation.isOrgUnitOfPublication 636850bf-e58c-4b59-bcf0-fa7418bb7977
relation.isOrgUnitOfPublication 0d54cd31-4133-46d5-b5cc-280b2c077ac3
relation.isOrgUnitOfPublication a6e60d5c-b0c7-474a-b49b-284dc710c078
relation.isOrgUnitOfPublication.latestForDiscovery 636850bf-e58c-4b59-bcf0-fa7418bb7977

Files