Acoustic Cavitation Model Based on a Novel Reduced Order Gas Pressure Law

dc.contributor.author Pasinlioğlu, Şenay
dc.contributor.author Delale, Can Fuad
dc.date.accessioned 2021-11-25T09:39:28Z
dc.date.available 2021-11-25T09:39:28Z
dc.date.issued 2021
dc.description.abstract The thermal behavior of a spherical gas bubble in a liquid excited by an acoustic pressure signal is investigated by constructing an iterative solution of the energy balance equations between the gas bubble and the surrounding liquid in the uniform pressure approximation. This iterative solution leads to hierarchy equations for the radial partial derivatives of the temperature at the bubble wall, which control the temporal rate of change of the gas pressure and gas temperature within the bubble. In particular, a closure relation for the hierarchy equations is introduced based on the ansatz that approximates the rapid change of state during the collapse of the bubble from almost isothermal to almost adiabatic behavior by time averaging the complex dynamics of change of state over a relatively short characteristic time. This, in turn, leads to the desired reduced order gas pressure law exhibiting power law dependence on the bubble wall temperature and on the bubble radius, with the polytropic index depending on the isentropic exponent of the gas and on a parameter that is a function of the Péclet number and a characteristic time scale. Results of the linear theory for gas bubbles are recovered by identifying this parameter as a function of the Péclet number based on the Minnaert frequency. The novel gas pressure law is then validated against the near-isothermal solution and against the results of the numerical simulations of the original energy balance equations for large amplitude oscillations using spectral methods. Consequently, an acoustic cavitation model that accounts for phase change but that neglects mass diffusion is constructed by employing the reduced order gas pressure law together with the Plesset–Zwick solution for the bubble wall temperature and the Keller–Miksis equation for spherical bubble dynamics. Results obtained using variable interface properties for acoustically driven cavitation bubbles in water show that the time variations of the bubble radius and the bubble wall temperature lie between those obtained by the isothermal and adiabatic laws depending on the value of the Péclet number and the characteristic time scale.
dc.identifier.citation Delale, C. F., & Pasinlioğlu, Ş. (04 October 2021 ). Acoustic cavitation model based on a novel reduced order gas pressure law. AIP Advances, 11(11), pp. 1-24. https://doi.org/10.1063/5.0068152
dc.identifier.doi 10.1063/5.0068152
dc.identifier.issn 2158-3226
dc.identifier.scopus 2-s2.0-85118769383
dc.identifier.uri https://hdl.handle.net/20.500.11779/1587
dc.identifier.uri https://doi.org/10.1063/5.0068152
dc.language.iso en
dc.relation.ispartof AIP Advances
dc.rights info:eu-repo/semantics/openAccess
dc.subject Air buubleles
dc.subject Oscillations
dc.subject Thermal behavior
dc.subject Vapor
dc.subject Bubble dynamics
dc.title Acoustic Cavitation Model Based on a Novel Reduced Order Gas Pressure Law
dc.type Article
dspace.entity.type Publication
gdc.author.id Can Fuat Delale / 0000-0002-4577-9201
gdc.author.institutional Delale, Can Fuad
gdc.bip.impulseclass C5
gdc.bip.influenceclass C5
gdc.bip.popularityclass C5
gdc.coar.access open access
gdc.coar.type text::journal::journal article
gdc.description.department Mühendislik Fakültesi, Makine Mühendisliği Bölümü
gdc.description.issue 11
gdc.description.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı
gdc.description.scopusquality Q3
gdc.description.startpage 1-24
gdc.description.volume 11
gdc.description.woscitationindex Science Citation Index Expanded
gdc.description.wosquality Q4
gdc.identifier.openalex W3209459791
gdc.identifier.wos WOS:000716755400013
gdc.index.type WoS
gdc.index.type Scopus
gdc.oaire.accesstype GOLD
gdc.oaire.diamondjournal false
gdc.oaire.impulse 1.0
gdc.oaire.influence 2.6322144E-9
gdc.oaire.isgreen true
gdc.oaire.keywords Oscillations
gdc.oaire.keywords Bubble Dynamics
gdc.oaire.keywords Physics
gdc.oaire.keywords QC1-999
gdc.oaire.keywords Vapor
gdc.oaire.keywords Thermal Behavior
gdc.oaire.keywords Air Buubleles
gdc.oaire.popularity 2.85153E-9
gdc.oaire.publicfunded false
gdc.oaire.sciencefields 03 medical and health sciences
gdc.oaire.sciencefields 0103 physical sciences
gdc.oaire.sciencefields 0305 other medical science
gdc.oaire.sciencefields 01 natural sciences
gdc.openalex.collaboration National
gdc.openalex.fwci 0.08381212
gdc.openalex.normalizedpercentile 0.35
gdc.opencitations.count 1
gdc.plumx.crossrefcites 1
gdc.plumx.mendeley 4
gdc.plumx.scopuscites 1
gdc.publishedmonth Kasım
gdc.relation.journal AIP Advances
gdc.scopus.citedcount 1
gdc.virtual.author Delale, Canfuad
gdc.wos.citedcount 1
gdc.wos.collaboration Uluslararası işbirliği ile yapılmayan - HAYIR
gdc.wos.documenttype Article
gdc.wos.indexdate 2021
gdc.wos.publishedmonth Ekim
gdc.yokperiod YÖK - 2021-22
relation.isAuthorOfPublication 3563f694-5873-43b3-997b-2a14de3c5ab6
relation.isAuthorOfPublication.latestForDiscovery 3563f694-5873-43b3-997b-2a14de3c5ab6
relation.isOrgUnitOfPublication 00b4b5da-2140-4d4a-a2b0-9c4ae142ea53
relation.isOrgUnitOfPublication 0d54cd31-4133-46d5-b5cc-280b2c077ac3
relation.isOrgUnitOfPublication a6e60d5c-b0c7-474a-b49b-284dc710c078
relation.isOrgUnitOfPublication.latestForDiscovery 00b4b5da-2140-4d4a-a2b0-9c4ae142ea53

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Delale-2021-Acoustic-cavitation-model-based-on-.pdf
Size:
7.62 MB
Format:
Adobe Portable Document Format
Description:
Full Text - Article

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.44 KB
Format:
Item-specific license agreed upon to submission
Description: