Elastic Deformation of Soft Tissue-Mimicking Materials Using a Single Microbubble and Acoustic Radiation Force

dc.contributor.author Körük, Hasan
dc.contributor.author Bezer, James H.
dc.contributor.author J Rowlands, Christopher
dc.contributor.author Choi, James J.
dc.date.accessioned 2020-09-25T10:17:22Z
dc.date.available 2020-09-25T10:17:22Z
dc.date.issued 2020
dc.description.abstract Mechanical effects of microbubbles on tissues are central to many emerging ultrasound applications. Here, we investigated the acoustic radiation force a microbubble exerts on tissue at clinically relevant therapeutic ultrasound parameters. Individual microbubbles administered into a wall-less hydrogel channel (diameter: 25–100 µm, Young's modulus: 2–8.7 kPa) were exposed to an acoustic pulse (centre frequency: 1 MHz, pulse length: 10 ms, peak-rarefactional pressures: 0.6–1.0 MPa). Using high-speed microscopy, each microbubble was tracked as it pushed against the hydrogel wall. We found that a single microbubble can transiently deform a soft tissue-mimicking material by several micrometres, producing tissue loading–unloading curves that were similar to those produced using other indentation-based methods. Indentation depths were linked to gel stiffness. Using a mathematical model fitted to the deformation curves, we estimated the radiation force on each bubble (typically tens of nanonewtons) and the viscosity of the gels. These results provide insight into the forces exerted on tissues during ultrasound therapy and indicate a potential source of bio-effects.
dc.description.sponsorship This study was supported by Alzheimer's Research UK (Grant ARUK-IRG2017 A-7). J.H.B. was funded by the King's College London and Imperial College London Engineering and Physical Sciences Research Council (EPSRC) Centre for Doctoral Training in Medical Imaging (Grant EP/L015226/1 ). We also acknowledge support from the Wellcome Trust (Grant 212490/Z/18/Z ), EPSRC (Grant EP/S016538/1 ), Biotechnology and Biological Sciences Research Council (BBSRC Grant BB/T011947/1 ) and Imperial College Excellence Fund for Frontier Research. Equipment from the Facility for Imaging by Light Microscopy (FILM) at Imperial College London was supported by funding from the Wellcome Trust (Grant 104931/Z/14/Z ) and BBSRC (Grant BB/L015129/1 )
dc.identifier.citation Bezer, J. H., Koruk, H., Rowlands, C. J., & Choi, J. J. (January 01, 2020). Elastic Deformation of Soft Tissue-Mimicking Materials Using a Single Microbubble and Acoustic Radiation Force. Ultrasound in Medicine & Biology.
dc.identifier.doi 10.1016/j.ultrasmedbio.2020.08.012
dc.identifier.issn 0301-5629
dc.identifier.scopus 2-s2.0-85090738507
dc.identifier.uri https://doi.org/10.1016/j.ultrasmedbio.2020.08.012
dc.identifier.uri https://hdl.handle.net/20.500.11779/1358
dc.language.iso en
dc.publisher Elsevier
dc.relation.ispartof Ultrasound in Medicine and Biology
dc.rights info:eu-repo/semantics/openAccess
dc.subject Microbubbles
dc.subject Bjerknes force
dc.subject Drug delivery
dc.subject Cavitation
dc.subject Acoustic radiation force
dc.subject Ultrasound contrast agents
dc.title Elastic Deformation of Soft Tissue-Mimicking Materials Using a Single Microbubble and Acoustic Radiation Force
dc.type Article
dspace.entity.type Publication
gdc.author.id Hasan Körük / 0000-0003-4189-6678
gdc.author.institutional Körük, Hasan
gdc.bip.impulseclass C4
gdc.bip.influenceclass C5
gdc.bip.popularityclass C4
gdc.coar.access open access
gdc.coar.type text::journal::journal article
gdc.description.department Mühendislik Fakültesi, Makine Mühendisliği Bölümü
gdc.description.endpage 3338
gdc.description.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı
gdc.description.scopusquality Q2
gdc.description.startpage 1
gdc.description.volume 46
gdc.description.woscitationindex Science Citation Index Expanded
gdc.description.wosquality Q2
gdc.identifier.openalex W3083845895
gdc.identifier.pmid 32919812
gdc.identifier.wos WOS:000581178900016
gdc.index.type WoS
gdc.index.type Scopus
gdc.index.type PubMed
gdc.oaire.accesstype HYBRID
gdc.oaire.diamondjournal false
gdc.oaire.impulse 13.0
gdc.oaire.influence 3.3143266E-9
gdc.oaire.isgreen true
gdc.oaire.keywords Cavitation
gdc.oaire.keywords Bjerknes force
gdc.oaire.keywords Microbubbles
gdc.oaire.keywords 610
gdc.oaire.keywords 600
gdc.oaire.keywords 1103 Clinical Sciences
gdc.oaire.keywords Original Contribution
gdc.oaire.keywords Acoustics
gdc.oaire.keywords Ultrasound contrast agents
gdc.oaire.keywords Models, Biological
gdc.oaire.keywords Acoustic radiation force
gdc.oaire.keywords Elastic Modulus
gdc.oaire.keywords Drug delivery
gdc.oaire.keywords Materials Testing
gdc.oaire.keywords Ultrasonography
gdc.oaire.popularity 1.6862833E-8
gdc.oaire.publicfunded false
gdc.oaire.sciencefields 01 natural sciences
gdc.oaire.sciencefields 0103 physical sciences
gdc.openalex.collaboration International
gdc.openalex.fwci 1.40936681
gdc.openalex.normalizedpercentile 0.78
gdc.opencitations.count 15
gdc.plumx.crossrefcites 16
gdc.plumx.facebookshareslikecount 78
gdc.plumx.mendeley 36
gdc.plumx.pubmedcites 2
gdc.plumx.scopuscites 14
gdc.publishedmonth Aralık
gdc.scopus.citedcount 14
gdc.virtual.author Körük, Hasan
gdc.wos.citedcount 12
gdc.wos.collaboration Uluslararası işbirliği ile yapılan - EVET
gdc.wos.documenttype Article
gdc.wos.indexdate 2020
gdc.wos.publishedmonth Aralık
gdc.yokperiod YÖK - 2020-21
relation.isAuthorOfPublication 744d844c-212d-42fc-9d03-6d2657e550c3
relation.isAuthorOfPublication.latestForDiscovery 744d844c-212d-42fc-9d03-6d2657e550c3
relation.isOrgUnitOfPublication 00b4b5da-2140-4d4a-a2b0-9c4ae142ea53
relation.isOrgUnitOfPublication 0d54cd31-4133-46d5-b5cc-280b2c077ac3
relation.isOrgUnitOfPublication a6e60d5c-b0c7-474a-b49b-284dc710c078
relation.isOrgUnitOfPublication.latestForDiscovery 00b4b5da-2140-4d4a-a2b0-9c4ae142ea53

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
BezerKoruk2020.pdf
Size:
1.2 MB
Format:
Adobe Portable Document Format
Description:
Full Text - Article

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.44 KB
Format:
Item-specific license agreed upon to submission
Description: