Toprak Özelliklerini ve İklim Değişikliğini Tahmin Etmek için Derin Öğrenme
No Thumbnail Available
Date
2025
Authors
Journal Title
Journal ISSN
Volume Title
Publisher
Open Access Color
OpenAIRE Downloads
OpenAIRE Views
Abstract
Toprak, bitki büyümesi için gerekli olan temel besinleri, mineralleri ve elementleri sağlamakla kalmayıp aynı zamanda iklim düzenlemesinde ve daha geniş ekosistem işleyişinde hayati bir rol oynayan temel bir doğal kaynaktır. Bu yüksek lisans tezi, arazi örtüsü, topografya, iklim verileri ve diğer mekansal faktörler gibi temel çevresel değişkenleri entegre ederek Türkiye genelinde Dijital Toprak Haritalama (DSM) uygulamalarında modern Yapay Zeka (AI) metodolojilerinin uygulanmasını iyileştirmeyi amaçlamaktadır. Bu hedefe ulaşmak için, bu değişkenlere dayalı olarak toprak özelliklerini tahmin etme performanslarını değerlendirmek üzere yedi farklı makine öğrenimi modelinin karşılaştırmalı analizi yürütülmüştür.
Soil is a fundamental natural resource that not only provides essential nutrients, minerals, and elements necessary for plant growth but also plays a vital role in climate regulation and broader ecosystem functioning. This master's thesis aims to improve the practises of modern Artificial Intelligence (AI) methodologies in Digital Soil Mapping (DSM) practices across Türkiye by integrating key environmental variables such as land cover, topography, climate data, and other spatial factors. To achieve this objective, a comparative analysis of seven different machine learning models was conducted to evaluate their performance in predicting soil properties based on these variables.
Soil is a fundamental natural resource that not only provides essential nutrients, minerals, and elements necessary for plant growth but also plays a vital role in climate regulation and broader ecosystem functioning. This master's thesis aims to improve the practises of modern Artificial Intelligence (AI) methodologies in Digital Soil Mapping (DSM) practices across Türkiye by integrating key environmental variables such as land cover, topography, climate data, and other spatial factors. To achieve this objective, a comparative analysis of seven different machine learning models was conducted to evaluate their performance in predicting soil properties based on these variables.
Description
Keywords
Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve Kontrol, Bilim ve Teknoloji, Computer Engineering and Computer Science and Control, Science and Technology
Turkish CoHE Thesis Center URL
Fields of Science
Citation
WoS Q
Scopus Q
Source
Volume
Issue
Start Page
End Page
87
Collections
Google Scholar™
Sustainable Development Goals
4
QUALITY EDUCATION

8
DECENT WORK AND ECONOMIC GROWTH

16
PEACE, JUSTICE AND STRONG INSTITUTIONS
