Reliability Study of Psychometric Tests in a Credit Scoring Model

dc.contributor.author Nicat, Sahin
dc.contributor.author Filiz, Gozde
dc.contributor.author Ozvural, Ozden Gebizlioglu
dc.contributor.author Çakar, Tuna
dc.date.accessioned 2024-09-08T16:52:57Z
dc.date.available 2024-09-08T16:52:57Z
dc.date.issued 2024
dc.description.abstract This study investigates the effectiveness and reliability of using psychometric tests in the credit decision-making processes within the finance sector. Psychometric tests, by measuring individuals' cognitive and psychological traits, hold the potential to broaden access to credit and identify high credit risk. However, after the literature review, it was seen that there was a need for more studies on the reliability and validity of these tests in finance. This study is designed to measure the test-retest reliability of a machine learning model and its inputs that utilize psychometric test results. Within the scope of the research, 115 participants were re-subjected to the same psychometric tests after an average of 6 months. Findings showed that psychometric tests and the machine learning model were generally consistent over time. This work has the potential to fill the gaps in the literature regarding the use of psychometric tests in the finance sector and lays a foundation for future research.
dc.identifier.doi 10.1109/SIU61531.2024.10600848
dc.identifier.isbn 9798350388978
dc.identifier.isbn 9798350388961
dc.identifier.issn 2165-0608
dc.identifier.scopus 2-s2.0-85200921274
dc.identifier.uri https://doi.org/10.1109/SIU61531.2024.10600848
dc.language.iso tr
dc.publisher Ieee
dc.relation.ispartof 32nd IEEE Signal Processing and Communications Applications Conference (SIU) -- MAY 15-18, 2024 -- Tarsus Univ Campus, Mersin, TURKEY
dc.relation.ispartofseries Signal Processing and Communications Applications Conference
dc.rights info:eu-repo/semantics/closedAccess
dc.subject Credit Scoring
dc.subject Alternative Data Sources
dc.subject Psychometric Data
dc.title Reliability Study of Psychometric Tests in a Credit Scoring Model
dc.title.alternative Kredi Skorlama Modelinde Psikometrik Testlerin Güvenirlik Çalışması
dc.type Conference Object
dspace.entity.type Publication
gdc.author.id Tuna Çakar / 0000-0001-8594-7399
gdc.author.institutional Çakar, Tuna
gdc.author.institutional Filiz, Gözde
gdc.bip.impulseclass C5
gdc.bip.influenceclass C5
gdc.bip.popularityclass C5
gdc.coar.access metadata only access
gdc.coar.type text::conference output
gdc.description.department Mühendislik Fakültesi, Bilgisayar Mühendisliği Bölümü
gdc.description.endpage 4
gdc.description.publicationcategory Konferans Öğesi - Uluslararası - Kurum Öğretim Elemanı
gdc.description.scopusquality N/A
gdc.description.startpage 1
gdc.description.woscitationindex Conference Proceedings Citation Index - Science
gdc.description.wosquality N/A
gdc.identifier.openalex W4400908438
gdc.identifier.wos WOS:001297894700108
gdc.index.type WoS
gdc.index.type Scopus
gdc.oaire.diamondjournal false
gdc.oaire.impulse 0.0
gdc.oaire.influence 2.5942106E-9
gdc.oaire.isgreen false
gdc.oaire.popularity 2.9478422E-9
gdc.oaire.publicfunded false
gdc.openalex.fwci 0.0
gdc.openalex.normalizedpercentile 0.1
gdc.opencitations.count 0
gdc.plumx.mendeley 4
gdc.plumx.scopuscites 0
gdc.publishedmonth Mayıs
gdc.scopus.citedcount 0
gdc.virtual.author Çakar, Tuna
gdc.wos.citedcount 0
gdc.wos.publishedmonth Mayis
gdc.yokperiod YÖK - 2023-24
relation.isAuthorOfPublication 10f8ce3b-94c2-40f0-9381-0725723768fe
relation.isAuthorOfPublication.latestForDiscovery 10f8ce3b-94c2-40f0-9381-0725723768fe
relation.isOrgUnitOfPublication 05ffa8cd-2a88-4676-8d3b-fc30eba0b7f3
relation.isOrgUnitOfPublication 0d54cd31-4133-46d5-b5cc-280b2c077ac3
relation.isOrgUnitOfPublication a6e60d5c-b0c7-474a-b49b-284dc710c078
relation.isOrgUnitOfPublication.latestForDiscovery 05ffa8cd-2a88-4676-8d3b-fc30eba0b7f3

Files