Steel Surface Defect Classification Via Deep Learning

dc.contributor.author Yildiz, Ahmet
dc.contributor.author Çakar, Tuna
dc.contributor.author Tunal, Mustafa Mert
dc.date.accessioned 2023-03-06T06:53:18Z
dc.date.available 2023-03-06T06:53:18Z
dc.date.issued 2022
dc.description.abstract Deep learning and image processing methods have taken place in many parts of our lives, as well as in the quality control stages of production lines. The aim of this study is to train and use a deep learning model to improve quality management using limited data and computing power. To achieve that, deep learning for quality control models were trained by classifying six different steel surface defect images in the NEU-DET dataset. Xception, ResNetV2 152, VGG19 and InceptionV3 architectures were used to train the model. High accuracy was obtained with both Xception and ResNetV2 152. © 2022 IEEE.
dc.identifier.citation Tunali, M. M., Yildiz, A., & Cakar, T. (2022). Steel Surface Defect Classification Via Deep Learning. 2022 7th International Conference on Computer Science and Engineering (UBMK). https://doi.org/10.1109/ubmk55850.2022.9919470
dc.identifier.doi 10.1109/UBMK55850.2022.9919470
dc.identifier.isbn 9781670000000
dc.identifier.scopus 2-s2.0-85141881108
dc.identifier.uri https://hdl.handle.net/20.500.11779/1916
dc.identifier.uri https://doi.org/10.1109/UBMK55850.2022.9919470
dc.language.iso en
dc.publisher IEEE
dc.relation.ispartof 2022 7th International Conference on Computer Science and Engineering (UBMK)
dc.rights info:eu-repo/semantics/openAccess
dc.subject Steel surface defect
dc.subject Resnet152 v2
dc.subject Deep learning
dc.subject Xception
dc.subject Neu-det
dc.subject Image classification
dc.subject Quality control
dc.subject Vgg19
dc.subject Inception v3
dc.title Steel Surface Defect Classification Via Deep Learning
dc.type Conference Object
dspace.entity.type Publication
gdc.author.id Çakar, Tuna / 0000-0001-8594-7399
gdc.author.institutional Tunal, Mustafa Mert, Yildiz, Ahmet, Çakar, Tuna
gdc.bip.impulseclass C4
gdc.bip.influenceclass C5
gdc.bip.popularityclass C4
gdc.coar.access open access
gdc.coar.type text::conference output
gdc.description.department Mühendislik Fakültesi, Bilgisayar Mühendisligi Bölümü
gdc.description.endpage 489
gdc.description.publicationcategory Konferans Öğesi - Ulusal - Kurum Öğretim Elemanı
gdc.description.scopusquality N/A
gdc.description.startpage 485 - 489
gdc.description.wosquality N/A
gdc.identifier.openalex W4308279669
gdc.index.type Scopus
gdc.oaire.diamondjournal false
gdc.oaire.impulse 6.0
gdc.oaire.influence 3.2090646E-9
gdc.oaire.isgreen true
gdc.oaire.keywords Quality Control
gdc.oaire.keywords ResNet152 V2
gdc.oaire.keywords Inception V3
gdc.oaire.keywords Deep Learning
gdc.oaire.keywords NEU-DET
gdc.oaire.keywords Image Classification
gdc.oaire.keywords Xception
gdc.oaire.keywords Steel Surface Defect
gdc.oaire.keywords VGG19
gdc.oaire.popularity 7.079292E-9
gdc.oaire.publicfunded false
gdc.oaire.sciencefields 0202 electrical engineering, electronic engineering, information engineering
gdc.oaire.sciencefields 02 engineering and technology
gdc.openalex.collaboration National
gdc.openalex.fwci 3.17891816
gdc.openalex.normalizedpercentile 0.92
gdc.openalex.toppercent TOP 10%
gdc.opencitations.count 5
gdc.plumx.mendeley 5
gdc.plumx.scopuscites 8
gdc.publishedmonth Eylül
gdc.relation.journal Proceedings - 7th International Conference on Computer Science and Engineering, Ubmk 2022
gdc.scopus.citedcount 9
gdc.virtual.author Çakar, Tuna
gdc.wos.publishedmonth Eylül
gdc.yokperiod YÖK - 2021-22
relation.isAuthorOfPublication 10f8ce3b-94c2-40f0-9381-0725723768fe
relation.isAuthorOfPublication.latestForDiscovery 10f8ce3b-94c2-40f0-9381-0725723768fe
relation.isOrgUnitOfPublication 05ffa8cd-2a88-4676-8d3b-fc30eba0b7f3
relation.isOrgUnitOfPublication 0d54cd31-4133-46d5-b5cc-280b2c077ac3
relation.isOrgUnitOfPublication a6e60d5c-b0c7-474a-b49b-284dc710c078
relation.isOrgUnitOfPublication.latestForDiscovery 05ffa8cd-2a88-4676-8d3b-fc30eba0b7f3

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Steel_Surface_Defect_Classification_Via_Deep_Learning.pdf
Size:
667.2 KB
Format:
Adobe Portable Document Format
Description:
Full Text - Article

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
0 B
Format:
Item-specific license agreed upon to submission
Description: