Steel Surface Defect Classification Via Deep Learning
| dc.contributor.author | Yildiz, Ahmet | |
| dc.contributor.author | Çakar, Tuna | |
| dc.contributor.author | Tunal, Mustafa Mert | |
| dc.date.accessioned | 2023-03-06T06:53:18Z | |
| dc.date.available | 2023-03-06T06:53:18Z | |
| dc.date.issued | 2022 | |
| dc.description.abstract | Deep learning and image processing methods have taken place in many parts of our lives, as well as in the quality control stages of production lines. The aim of this study is to train and use a deep learning model to improve quality management using limited data and computing power. To achieve that, deep learning for quality control models were trained by classifying six different steel surface defect images in the NEU-DET dataset. Xception, ResNetV2 152, VGG19 and InceptionV3 architectures were used to train the model. High accuracy was obtained with both Xception and ResNetV2 152. © 2022 IEEE. | |
| dc.identifier.citation | Tunali, M. M., Yildiz, A., & Cakar, T. (2022). Steel Surface Defect Classification Via Deep Learning. 2022 7th International Conference on Computer Science and Engineering (UBMK). https://doi.org/10.1109/ubmk55850.2022.9919470 | |
| dc.identifier.doi | 10.1109/UBMK55850.2022.9919470 | |
| dc.identifier.isbn | 9781670000000 | |
| dc.identifier.scopus | 2-s2.0-85141881108 | |
| dc.identifier.uri | https://hdl.handle.net/20.500.11779/1916 | |
| dc.identifier.uri | https://doi.org/10.1109/UBMK55850.2022.9919470 | |
| dc.language.iso | en | |
| dc.publisher | IEEE | |
| dc.relation.ispartof | 2022 7th International Conference on Computer Science and Engineering (UBMK) | |
| dc.rights | info:eu-repo/semantics/openAccess | |
| dc.subject | Steel surface defect | |
| dc.subject | Resnet152 v2 | |
| dc.subject | Deep learning | |
| dc.subject | Xception | |
| dc.subject | Neu-det | |
| dc.subject | Image classification | |
| dc.subject | Quality control | |
| dc.subject | Vgg19 | |
| dc.subject | Inception v3 | |
| dc.title | Steel Surface Defect Classification Via Deep Learning | |
| dc.type | Conference Object | |
| dspace.entity.type | Publication | |
| gdc.author.id | Çakar, Tuna / 0000-0001-8594-7399 | |
| gdc.author.institutional | Tunal, Mustafa Mert, Yildiz, Ahmet, Çakar, Tuna | |
| gdc.bip.impulseclass | C4 | |
| gdc.bip.influenceclass | C5 | |
| gdc.bip.popularityclass | C4 | |
| gdc.coar.access | open access | |
| gdc.coar.type | text::conference output | |
| gdc.description.department | Mühendislik Fakültesi, Bilgisayar Mühendisligi Bölümü | |
| gdc.description.endpage | 489 | |
| gdc.description.publicationcategory | Konferans Öğesi - Ulusal - Kurum Öğretim Elemanı | |
| gdc.description.scopusquality | N/A | |
| gdc.description.startpage | 485 - 489 | |
| gdc.description.wosquality | N/A | |
| gdc.identifier.openalex | W4308279669 | |
| gdc.index.type | Scopus | |
| gdc.oaire.diamondjournal | false | |
| gdc.oaire.impulse | 6.0 | |
| gdc.oaire.influence | 3.2090646E-9 | |
| gdc.oaire.isgreen | true | |
| gdc.oaire.keywords | Quality Control | |
| gdc.oaire.keywords | ResNet152 V2 | |
| gdc.oaire.keywords | Inception V3 | |
| gdc.oaire.keywords | Deep Learning | |
| gdc.oaire.keywords | NEU-DET | |
| gdc.oaire.keywords | Image Classification | |
| gdc.oaire.keywords | Xception | |
| gdc.oaire.keywords | Steel Surface Defect | |
| gdc.oaire.keywords | VGG19 | |
| gdc.oaire.popularity | 7.079292E-9 | |
| gdc.oaire.publicfunded | false | |
| gdc.oaire.sciencefields | 0202 electrical engineering, electronic engineering, information engineering | |
| gdc.oaire.sciencefields | 02 engineering and technology | |
| gdc.openalex.collaboration | National | |
| gdc.openalex.fwci | 3.17891816 | |
| gdc.openalex.normalizedpercentile | 0.92 | |
| gdc.openalex.toppercent | TOP 10% | |
| gdc.opencitations.count | 5 | |
| gdc.plumx.mendeley | 5 | |
| gdc.plumx.scopuscites | 8 | |
| gdc.publishedmonth | Eylül | |
| gdc.relation.journal | Proceedings - 7th International Conference on Computer Science and Engineering, Ubmk 2022 | |
| gdc.scopus.citedcount | 9 | |
| gdc.virtual.author | Çakar, Tuna | |
| gdc.wos.publishedmonth | Eylül | |
| gdc.yokperiod | YÖK - 2021-22 | |
| relation.isAuthorOfPublication | 10f8ce3b-94c2-40f0-9381-0725723768fe | |
| relation.isAuthorOfPublication.latestForDiscovery | 10f8ce3b-94c2-40f0-9381-0725723768fe | |
| relation.isOrgUnitOfPublication | 05ffa8cd-2a88-4676-8d3b-fc30eba0b7f3 | |
| relation.isOrgUnitOfPublication | 0d54cd31-4133-46d5-b5cc-280b2c077ac3 | |
| relation.isOrgUnitOfPublication | a6e60d5c-b0c7-474a-b49b-284dc710c078 | |
| relation.isOrgUnitOfPublication.latestForDiscovery | 05ffa8cd-2a88-4676-8d3b-fc30eba0b7f3 |
Files
Original bundle
1 - 1 of 1
Loading...
- Name:
- Steel_Surface_Defect_Classification_Via_Deep_Learning.pdf
- Size:
- 667.2 KB
- Format:
- Adobe Portable Document Format
- Description:
- Full Text - Article
License bundle
1 - 1 of 1
No Thumbnail Available
- Name:
- license.txt
- Size:
- 0 B
- Format:
- Item-specific license agreed upon to submission
- Description:
