The Application of Two Bayesian Personalized Ranking Approaches Based on Item Recommendation From Implicit Feedback

dc.contributor.author Tagtekin, Burak
dc.contributor.author Sahin, Zeynep
dc.contributor.author Çakar, Tuna
dc.contributor.author Drias, Yassine
dc.date.accessioned 2024-09-08T16:52:57Z
dc.date.available 2024-09-08T16:52:57Z
dc.date.issued 2024
dc.description.abstract The present study has aimed to provide a different ranking approach that will be used actively in a sector-specific application regarding the optimization of item ranking presented to the users. The current online approach in several different applications still holds a manual ranking algorithm whose parameters are determined by the data specialists with adequate domain-knowledge. The obtained findings from the present study indicate that the optimized Bayesian Personalized Ranking models will be used for providing a suitable, data-driven input for the ranking system that would serve to be personalized. The outcomes of the present study also demonstrate that the model using LearnBPR optimized with a stochastic gradient descent algorithm outperform the other similar methods. The sample model outputs were also investigated by a user sample to ensure that the algorithm was working correctly. The next potential step is to provide a normalization process to include the extracted information to the current ranking system and observe the performance of this new algorithm with the A/B tests conducted.
dc.identifier.doi 10.1109/SIU61531.2024.10601038
dc.identifier.isbn 9798350388978
dc.identifier.isbn 9798350388961
dc.identifier.issn 2165-0608
dc.identifier.scopus 2-s2.0-85200922903
dc.identifier.uri https://hdl.handle.net/20.500.11779/2335
dc.language.iso en
dc.publisher Ieee
dc.relation.ispartof 32nd IEEE Signal Processing and Communications Applications Conference (SIU) -- MAY 15-18, 2024 -- Tarsus Univ Campus, Mersin, TURKEY
dc.relation.ispartofseries Signal Processing and Communications Applications Conference
dc.rights info:eu-repo/semantics/closedAccess
dc.subject Smart Sorting
dc.subject Learning To Rank (Ltr)
dc.subject Bayesian Personalized Ranking (Bpr)
dc.subject Cuisine Recommendation
dc.subject Stochastic Gradient Descent Optimization
dc.title The Application of Two Bayesian Personalized Ranking Approaches Based on Item Recommendation From Implicit Feedback
dc.title.alternative Örtük Geri Bildirime Dayalı Öğe Tavsiyesi İçin İki Bayes Kişiselleştirilmiş Sıralama Yaklaşımının Uygulanması
dc.type Conference Object
dspace.entity.type Publication
gdc.author.id Tuna Çakar / 0000-0001-8594-7399
gdc.author.institutional Çakar, Tuna
gdc.author.institutional Drias, Yassine
gdc.bip.impulseclass C5
gdc.bip.influenceclass C5
gdc.bip.popularityclass C5
gdc.coar.access metadata only access
gdc.coar.type text::conference output
gdc.description.department Mühendislik Fakültesi, Bilgisayar Mühendisliği Bölümü
gdc.description.endpage 4
gdc.description.publicationcategory Konferans Öğesi - Uluslararası - Kurum Öğretim Elemanı
gdc.description.scopusquality N/A
gdc.description.startpage 1
gdc.description.woscitationindex Conference Proceedings Citation Index - Science
gdc.description.wosquality N/A
gdc.identifier.openalex W4400908726
gdc.identifier.wos WOS:001297894700251
gdc.index.type WoS
gdc.index.type Scopus
gdc.oaire.diamondjournal false
gdc.oaire.impulse 0.0
gdc.oaire.influence 2.5942106E-9
gdc.oaire.isgreen false
gdc.oaire.keywords Bayesian personalized ranking (BPR); cuisine recommendation; learning to rank (LTR); smart sorting; stochastic gradient descent optimization;
gdc.oaire.popularity 2.9478422E-9
gdc.oaire.publicfunded false
gdc.openalex.collaboration International
gdc.openalex.fwci 0.0
gdc.openalex.normalizedpercentile 0.17
gdc.opencitations.count 0
gdc.plumx.mendeley 1
gdc.plumx.scopuscites 0
gdc.publishedmonth Temmuz
gdc.scopus.citedcount 0
gdc.virtual.author Çakar, Tuna
gdc.virtual.author Drias, Yassine
gdc.wos.citedcount 0
gdc.wos.publishedmonth Temmuz
gdc.yokperiod YÖK - 2023-24
local.message.claim 2024-10-23T16:43:06.689+0300
local.message.claim |rp00139
local.message.claim |submit_approve
local.message.claim |dc_contributor_author
local.message.claim |None
relation.isAuthorOfPublication 10f8ce3b-94c2-40f0-9381-0725723768fe
relation.isAuthorOfPublication fc428ec9-7ded-49de-98b3-c32be0d42348
relation.isAuthorOfPublication.latestForDiscovery 10f8ce3b-94c2-40f0-9381-0725723768fe
relation.isOrgUnitOfPublication 05ffa8cd-2a88-4676-8d3b-fc30eba0b7f3
relation.isOrgUnitOfPublication 0d54cd31-4133-46d5-b5cc-280b2c077ac3
relation.isOrgUnitOfPublication a6e60d5c-b0c7-474a-b49b-284dc710c078
relation.isOrgUnitOfPublication.latestForDiscovery 05ffa8cd-2a88-4676-8d3b-fc30eba0b7f3

Files

Original bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
Full Text - Article.pdf
Size:
344.07 KB
Format:
Adobe Portable Document Format