Enhancing Quality Control in Plastic Injection Production: Deep Learning-Based Detection and Classification of Defects

dc.contributor.author Mutlu, İsmail
dc.contributor.author Çakar, Tuna
dc.contributor.author Aslan, Yeşim
dc.contributor.author Yıldız, Ahmet
dc.contributor.author Sayar, Alperen
dc.contributor.author Şimsek, Kamil
dc.contributor.author Tunalı, Mustafa Mert
dc.date.accessioned 2023-12-13T09:19:38Z
dc.date.available 2023-12-13T09:19:38Z
dc.date.issued 2023
dc.description.abstract This study investigates the applicability of diverse deep learning techniques in detecting and classifying defects within plastic injection manufacturing processes. The findings derived from the models yield several feasible solutions that hold potential practical implications. Notably, the implementation of the Xception model as a classification framework presents a potential domain for enhancing quality control procedures. The developed models, trained on the prepared data sets, provide compelling evidence for the potential utilization of artificial intelligence technologies in the manufacturing industry. Consequently, this study represents a noteworthy contribution to the limited yet auspicious academic research in the field.
dc.identifier.citation Tunalι, M. M., Sayar, A., Aslan, Y., Mutlu, İ., Şimşek, K., & Çakar, T. (2023, September).Enhancing quality control in plastic injection production: deep learning-based detection and classification of defects. In 2023 8th International Conference on Computer Science and Engineering (UBMK). IEEE. (pp. 498-502).
dc.identifier.doi 10.1109/UBMK59864.2023.10286748
dc.identifier.isbn 9798350340815
dc.identifier.scopus 2-s2.0-85177594080
dc.identifier.uri https://doi.org/10.1109/UBMK59864.2023.10286748
dc.identifier.uri https://hdl.handle.net/20.500.11779/2149
dc.language.iso en
dc.publisher IEEE
dc.relation.ispartof 2023 8th International Conference on Computer Science and Engineering (UBMK)
dc.rights info:eu-repo/semantics/closedAccess
dc.subject Error detection
dc.subject Classification
dc.subject Quality control
dc.subject Plastic injection
dc.subject Deep learning
dc.title Enhancing Quality Control in Plastic Injection Production: Deep Learning-Based Detection and Classification of Defects
dc.type Conference Object
dspace.entity.type Publication
gdc.author.id Tuna Çakar / 0000-0001-8594-7399
gdc.author.institutional Çakar, Tuna
gdc.author.institutional Yıldız, Ahmet
gdc.author.institutional Tunalı, Mustafa Mert
gdc.bip.impulseclass C5
gdc.bip.influenceclass C5
gdc.bip.popularityclass C5
gdc.coar.access metadata only access
gdc.coar.type text::conference output
gdc.description.department Mühendislik Fakültesi, Bilgisayar Mühendisliği Bölümü
gdc.description.endpage 502
gdc.description.publicationcategory Konferans Öğesi - Uluslararası - Kurum Öğretim Elemanı
gdc.description.scopusquality N/A
gdc.description.startpage 498
gdc.description.volume 38
gdc.description.wosquality N/A
gdc.identifier.openalex W4387913028
gdc.index.type Scopus
gdc.oaire.diamondjournal false
gdc.oaire.impulse 0.0
gdc.oaire.influence 2.5942106E-9
gdc.oaire.isgreen false
gdc.oaire.popularity 2.5427536E-9
gdc.oaire.publicfunded false
gdc.openalex.collaboration National
gdc.openalex.fwci 0.28551373
gdc.openalex.normalizedpercentile 0.6
gdc.opencitations.count 0
gdc.plumx.mendeley 1
gdc.plumx.scopuscites 1
gdc.publishedmonth Eylül
gdc.relation.journal UBMK 2023 - Proceedings: 8th International Conference on Computer Science and Engineering
gdc.scopus.citedcount 1
gdc.virtual.author Çakar, Tuna
gdc.wos.publishedmonth Eylül
gdc.yokperiod YÖK - 2023-24
relation.isAuthorOfPublication 10f8ce3b-94c2-40f0-9381-0725723768fe
relation.isAuthorOfPublication.latestForDiscovery 10f8ce3b-94c2-40f0-9381-0725723768fe
relation.isOrgUnitOfPublication 05ffa8cd-2a88-4676-8d3b-fc30eba0b7f3
relation.isOrgUnitOfPublication 0d54cd31-4133-46d5-b5cc-280b2c077ac3
relation.isOrgUnitOfPublication a6e60d5c-b0c7-474a-b49b-284dc710c078
relation.isOrgUnitOfPublication.latestForDiscovery 05ffa8cd-2a88-4676-8d3b-fc30eba0b7f3

Files

Original bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
Enhancing_Quality_Control_in_Plastic_Injection_Producttion.pdf
Size:
405.91 KB
Format:
Adobe Portable Document Format
Description:
Proceedings Paper

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.44 KB
Format:
Item-specific license agreed upon to submission
Description: