Enhancing Quality Control in Plastic Injection Production: Deep Learning-Based Detection and Classification of Defects
| dc.contributor.author | Mutlu, İsmail | |
| dc.contributor.author | Çakar, Tuna | |
| dc.contributor.author | Aslan, Yeşim | |
| dc.contributor.author | Yıldız, Ahmet | |
| dc.contributor.author | Sayar, Alperen | |
| dc.contributor.author | Şimsek, Kamil | |
| dc.contributor.author | Tunalı, Mustafa Mert | |
| dc.date.accessioned | 2023-12-13T09:19:38Z | |
| dc.date.available | 2023-12-13T09:19:38Z | |
| dc.date.issued | 2023 | |
| dc.description.abstract | This study investigates the applicability of diverse deep learning techniques in detecting and classifying defects within plastic injection manufacturing processes. The findings derived from the models yield several feasible solutions that hold potential practical implications. Notably, the implementation of the Xception model as a classification framework presents a potential domain for enhancing quality control procedures. The developed models, trained on the prepared data sets, provide compelling evidence for the potential utilization of artificial intelligence technologies in the manufacturing industry. Consequently, this study represents a noteworthy contribution to the limited yet auspicious academic research in the field. | |
| dc.identifier.citation | Tunalι, M. M., Sayar, A., Aslan, Y., Mutlu, İ., Şimşek, K., & Çakar, T. (2023, September).Enhancing quality control in plastic injection production: deep learning-based detection and classification of defects. In 2023 8th International Conference on Computer Science and Engineering (UBMK). IEEE. (pp. 498-502). | |
| dc.identifier.doi | 10.1109/UBMK59864.2023.10286748 | |
| dc.identifier.isbn | 9798350340815 | |
| dc.identifier.scopus | 2-s2.0-85177594080 | |
| dc.identifier.uri | https://doi.org/10.1109/UBMK59864.2023.10286748 | |
| dc.identifier.uri | https://hdl.handle.net/20.500.11779/2149 | |
| dc.language.iso | en | |
| dc.publisher | IEEE | |
| dc.relation.ispartof | 2023 8th International Conference on Computer Science and Engineering (UBMK) | |
| dc.rights | info:eu-repo/semantics/closedAccess | |
| dc.subject | Error detection | |
| dc.subject | Classification | |
| dc.subject | Quality control | |
| dc.subject | Plastic injection | |
| dc.subject | Deep learning | |
| dc.title | Enhancing Quality Control in Plastic Injection Production: Deep Learning-Based Detection and Classification of Defects | |
| dc.type | Conference Object | |
| dspace.entity.type | Publication | |
| gdc.author.id | Tuna Çakar / 0000-0001-8594-7399 | |
| gdc.author.institutional | Çakar, Tuna | |
| gdc.author.institutional | Yıldız, Ahmet | |
| gdc.author.institutional | Tunalı, Mustafa Mert | |
| gdc.bip.impulseclass | C5 | |
| gdc.bip.influenceclass | C5 | |
| gdc.bip.popularityclass | C5 | |
| gdc.coar.access | metadata only access | |
| gdc.coar.type | text::conference output | |
| gdc.description.department | Mühendislik Fakültesi, Bilgisayar Mühendisliği Bölümü | |
| gdc.description.endpage | 502 | |
| gdc.description.publicationcategory | Konferans Öğesi - Uluslararası - Kurum Öğretim Elemanı | |
| gdc.description.scopusquality | N/A | |
| gdc.description.startpage | 498 | |
| gdc.description.volume | 38 | |
| gdc.description.wosquality | N/A | |
| gdc.identifier.openalex | W4387913028 | |
| gdc.index.type | Scopus | |
| gdc.oaire.diamondjournal | false | |
| gdc.oaire.impulse | 0.0 | |
| gdc.oaire.influence | 2.5942106E-9 | |
| gdc.oaire.isgreen | false | |
| gdc.oaire.popularity | 2.5427536E-9 | |
| gdc.oaire.publicfunded | false | |
| gdc.openalex.collaboration | National | |
| gdc.openalex.fwci | 0.28551373 | |
| gdc.openalex.normalizedpercentile | 0.6 | |
| gdc.opencitations.count | 0 | |
| gdc.plumx.mendeley | 1 | |
| gdc.plumx.scopuscites | 1 | |
| gdc.publishedmonth | Eylül | |
| gdc.relation.journal | UBMK 2023 - Proceedings: 8th International Conference on Computer Science and Engineering | |
| gdc.scopus.citedcount | 1 | |
| gdc.virtual.author | Çakar, Tuna | |
| gdc.wos.publishedmonth | Eylül | |
| gdc.yokperiod | YÖK - 2023-24 | |
| relation.isAuthorOfPublication | 10f8ce3b-94c2-40f0-9381-0725723768fe | |
| relation.isAuthorOfPublication.latestForDiscovery | 10f8ce3b-94c2-40f0-9381-0725723768fe | |
| relation.isOrgUnitOfPublication | 05ffa8cd-2a88-4676-8d3b-fc30eba0b7f3 | |
| relation.isOrgUnitOfPublication | 0d54cd31-4133-46d5-b5cc-280b2c077ac3 | |
| relation.isOrgUnitOfPublication | a6e60d5c-b0c7-474a-b49b-284dc710c078 | |
| relation.isOrgUnitOfPublication.latestForDiscovery | 05ffa8cd-2a88-4676-8d3b-fc30eba0b7f3 |
Files
Original bundle
1 - 1 of 1
No Thumbnail Available
- Name:
- Enhancing_Quality_Control_in_Plastic_Injection_Producttion.pdf
- Size:
- 405.91 KB
- Format:
- Adobe Portable Document Format
- Description:
- Proceedings Paper
License bundle
1 - 1 of 1
No Thumbnail Available
- Name:
- license.txt
- Size:
- 1.44 KB
- Format:
- Item-specific license agreed upon to submission
- Description:
