Recognizing Non-Manual Signs in Turkish Sign Language

dc.contributor.author Gökberk, Berk
dc.contributor.author Akarun, Lale
dc.contributor.author Aktaş, Müjde
dc.contributor.other 02.02. Department of Computer Engineering
dc.contributor.other 02. Faculty of Engineering
dc.contributor.other 01. MEF University
dc.date.accessioned 2020-02-07T14:59:58Z
dc.date.available 2020-02-07T14:59:58Z
dc.date.issued 2019
dc.description.WoSDocumentType Proceedings Paper
dc.description.WoSIndexDate 2019
dc.description.abstract Recognition of non-manual components in sign language has been a neglected topic, partly due to the absence of annotated non-manual sign datasets. We have collected a dataset of videos with non-manual signs, displaying facial expressions and head movements and prepared frame-level annotations. In this paper, we present the Turkish Sign Language (TSL) non-manual signs dataset and provide a baseline system for non-manual sign recognition. A deep learning based recognition system is proposed, in which the pre-trained ResNet Convolutional Neural Network (CNN) is employed to recognize question, negation side to side and negation up-down, affirmation and pain movements and expressions. Our subject independent method achieves 78.49% overall frame-level accuracy on 483 TSL videos performed by six subjects, who are native TSL signers. Prediction results of consecutive frames are filtered for analyzing the qualitative results.
dc.description.sponsorship IEEE France Section, IEEE Turkey Section, Universite Paris-Saclay, Yeditepe University.
dc.identifier.citation Aktaş, M., Gökberk, B. & Akarun, L., (6-9 November, 2019). Recognizing non-manual signs in Turkish sign language, 2019 Ninth International Conference on Image Processing Theory, Tools and Applications (IPTA 2019), pp 1-6, DOI: https://doi.org/10.1109/IPTA.2019.8936081
dc.identifier.doi 10.1109/IPTA.2019.8936081
dc.identifier.isbn 9781728139753
dc.identifier.scopus 2-s2.0-85077967469
dc.identifier.uri https://hdl.handle.net/20.500.11779/1302
dc.identifier.uri https://doi.org/10.1109/IPTA.2019.8936081
dc.language.iso en
dc.publisher IEEE
dc.relation.ispartof 9th International Conference on Image Processing Theory, Tools and Applications, IPTA 2019
dc.rights info:eu-repo/semantics/closedAccess
dc.subject Facial expression recognition
dc.subject Non-manual sign analysis
dc.subject Sign language recognition
dc.title Recognizing Non-Manual Signs in Turkish Sign Language
dc.type Conference Object
dspace.entity.type Publication
gdc.author.id Berk Gökberk / 0000-0001-6299-1610
gdc.author.institutional Gökberk, Berk
gdc.author.institutional Gökberk, Berk
gdc.bip.impulseclass C5
gdc.bip.influenceclass C5
gdc.bip.popularityclass C4
gdc.coar.access metadata only access
gdc.coar.type text::conference output
gdc.description.department Mühendislik Fakültesi, Bilgisayar Mühendisliği Bölümü
gdc.description.endpage 6
gdc.description.publicationcategory Konferans Öğesi - Uluslararası - Kurum Öğretim Elemanı
gdc.description.scopusquality N/A
gdc.description.startpage 1
gdc.description.woscitationindex Conference Proceedings Citation Index - Science
gdc.description.wosquality N/A
gdc.identifier.wos WOS:000529320000011
gdc.oaire.diamondjournal false
gdc.oaire.impulse 4.0
gdc.oaire.influence 3.008264E-9
gdc.oaire.isgreen false
gdc.oaire.popularity 8.136138E-9
gdc.oaire.publicfunded false
gdc.oaire.sciencefields 0202 electrical engineering, electronic engineering, information engineering
gdc.oaire.sciencefields 02 engineering and technology
gdc.openalex.fwci 0.685
gdc.opencitations.count 9
gdc.plumx.crossrefcites 5
gdc.plumx.mendeley 14
gdc.plumx.scopuscites 5
gdc.publishedmonth Kasım
gdc.scopus.citedcount 5
gdc.wos.citedcount 8
gdc.wos.publishedmonth Kasım
gdc.wos.yokperiod YÖK - 2019-20
relation.isAuthorOfPublication 417aa7f3-2bfb-4642-933c-9562ec5b8e64
relation.isAuthorOfPublication.latestForDiscovery 417aa7f3-2bfb-4642-933c-9562ec5b8e64
relation.isOrgUnitOfPublication 05ffa8cd-2a88-4676-8d3b-fc30eba0b7f3
relation.isOrgUnitOfPublication 0d54cd31-4133-46d5-b5cc-280b2c077ac3
relation.isOrgUnitOfPublication a6e60d5c-b0c7-474a-b49b-284dc710c078
relation.isOrgUnitOfPublication.latestForDiscovery 05ffa8cd-2a88-4676-8d3b-fc30eba0b7f3

Files

Original bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
BerkGökberk.pdf
Size:
1.55 MB
Format:
Adobe Portable Document Format
Description:
Yayıncı Sürümü - Konferans Dosyası

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.44 KB
Format:
Item-specific license agreed upon to submission
Description: