Determining and Evaluating New Store Locations Using Remote Sensing and Machine Learning

dc.contributor.author Ünsalan, Cem
dc.contributor.author Turgay, Zeynep Zerrin
dc.contributor.author Küçükaydın, Hande
dc.contributor.author Höke, Berkan
dc.date.accessioned 2021-06-19T08:52:30Z
dc.date.available 2021-06-19T08:52:30Z
dc.date.issued 2021
dc.description.abstract Decision making for store locations is crucial for retail companies as the profit depends on the location. The key point for correct store location is profit approximation, which is highly dependent on population of the corresponding region, and hence, the volume of the residential area. Thus, estimating building volumes provides insight about the revenue if a new store is about to be opened there. Remote sensing through stereo/tri-stereo satellite images provides wide area coverage as well as adequate resolution for three dimensional reconstruction for volume estimation. We reconstruct 3D map of corresponding region with the help of semiglobal matching and mask R-CNN algorithms for this purpose. Using the existing store data, we construct models for estimating the revenue based on surrounding building volumes. In order to choose the right location, the suitable utility model, which calculates store revenues, shouldbe rigorously determined. Moreover, model parameters should be assessed as correctly as possible. Instead of using randomly generated parameters, we employ remote sensing, computer vision, and machine learning techniques, which provide a novel way for evaluating new store locations.
dc.identifier.citation Höke, B., Turgay, Z., Ünsalan, C., & Küçükaydın, H. (31/05/2021). Determining and evaluating new store locations using remote sensing and machine learning. Turkish Journal of Electrical Engineering & Computer Sciences, 29(3). p.1509-1523.
dc.identifier.doi 10.3906/elk-2005-202
dc.identifier.issn 1300-0632
dc.identifier.scopus 2-s2.0-85108346790
dc.identifier.uri https://hdl.handle.net/20.500.11779/1499
dc.identifier.uri https://doi.org/10.3906/elk-2005-202
dc.language.iso en
dc.publisher Tübitak
dc.relation.ispartof Turkish Journal of Electrical Engineering and Computer Sciences
dc.rights info:eu-repo/semantics/openAccess
dc.subject Revenue estimation
dc.subject Competitive facility location
dc.subject Machine learning
dc.subject Utility model
dc.subject Remote sensing
dc.title Determining and Evaluating New Store Locations Using Remote Sensing and Machine Learning
dc.type Article
dspace.entity.type Publication
gdc.author.id Hande Küçükaydın / 0000-0003-2527-2064
gdc.author.institutional Küçükaydın, Hande
gdc.bip.impulseclass C5
gdc.bip.influenceclass C5
gdc.bip.popularityclass C5
gdc.coar.access open access
gdc.coar.type text::journal::journal article
gdc.description.department Mühendislik Fakültesi, Endüstri Mühendisliği Bölümü
gdc.description.endpage 1523
gdc.description.issue 3
gdc.description.publicationcategory Makale - Uluslararası - Editör Denetimli Dergi
gdc.description.scopusquality Q2
gdc.description.startpage 1509
gdc.description.volume 29
gdc.description.woscitationindex Science Citation Index Expanded
gdc.description.wosquality Q3
gdc.identifier.openalex W3170940890
gdc.identifier.trdizinid 523099
gdc.identifier.wos WOS:000679318000002
gdc.index.type WoS
gdc.index.type Scopus
gdc.index.type TR-Dizin
gdc.oaire.accesstype GOLD
gdc.oaire.diamondjournal false
gdc.oaire.impulse 0.0
gdc.oaire.influence 2.6224085E-9
gdc.oaire.isgreen true
gdc.oaire.keywords COMPETITIVE FACILITY LOCATION
gdc.oaire.keywords MODEL
gdc.oaire.keywords machine learning
gdc.oaire.keywords revenue estimation
gdc.oaire.keywords DESIGN
gdc.oaire.keywords competitive facility location
gdc.oaire.keywords ACCURATE
gdc.oaire.keywords Remote sensing
gdc.oaire.keywords utility model
gdc.oaire.popularity 1.9043098E-9
gdc.oaire.publicfunded false
gdc.openalex.collaboration National
gdc.openalex.fwci 0.0
gdc.openalex.normalizedpercentile 0.06
gdc.opencitations.count 0
gdc.plumx.mendeley 8
gdc.plumx.scopuscites 1
gdc.publishedmonth Mayıs
gdc.relation.journal Turkish Journal of Electrical Engineering & Computer Sciences
gdc.relation.tubitak 3151002
gdc.scopus.citedcount 1
gdc.virtual.author Küçükaydın, Hande
gdc.wos.citedcount 1
gdc.wos.collaboration Uluslararası işbirliği ile yapılmayan - HAYIR
gdc.wos.documenttype Article
gdc.wos.indexdate 2021
gdc.wos.publishedmonth Mayıs
gdc.yokperiod YÖK - 2020-21
relation.isAuthorOfPublication dd669147-971f-4d2a-af0a-4e0e8aa9bd94
relation.isAuthorOfPublication.latestForDiscovery dd669147-971f-4d2a-af0a-4e0e8aa9bd94
relation.isOrgUnitOfPublication 636850bf-e58c-4b59-bcf0-fa7418bb7977
relation.isOrgUnitOfPublication 0d54cd31-4133-46d5-b5cc-280b2c077ac3
relation.isOrgUnitOfPublication a6e60d5c-b0c7-474a-b49b-284dc710c078
relation.isOrgUnitOfPublication.latestForDiscovery 636850bf-e58c-4b59-bcf0-fa7418bb7977

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
elk-29-3-12-2005-202.pdf
Size:
2.4 MB
Format:
Adobe Portable Document Format
Description:
Full Text - Article

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.44 KB
Format:
Item-specific license agreed upon to submission
Description: