Human Semantic Parsing for Person Re-Identification

dc.contributor.author Kalayeh, Mahdi M
dc.contributor.author Başaran, Emrah
dc.contributor.author Shah, Mubarak
dc.contributor.author Kamasak, Mustafa E
dc.contributor.author Gökmen, Muhittin
dc.date.accessioned 2019-02-20T14:09:29Z
dc.date.available 2019-02-20T14:09:29Z
dc.date.issued 2018
dc.description.abstract Person re-identification is a challenging task mainly dueto factors such as background clutter, pose, illuminationand camera point of view variations. These elements hinder the process of extracting robust and discriminative representations, hence preventing different identities from being successfully distinguished. To improve the representation learning, usually local features from human body partsare extracted. However, the common practice for such aprocess has been based on bounding box part detection.In this paper, we propose to adopt human semantic parsing which, due to its pixel-level accuracy and capabilityof modeling arbitrary contours, is naturally a better alternative. Our proposed SPReID integrates human semanticparsing in person re-identification and not only considerably outperforms its counter baseline, but achieves stateof-the-art performance. We also show that, by employinga simple yet effective training strategy, standard populardeep convolutional architectures such as Inception-V3 andResNet-152, with no modification, while operating solelyon full image, can dramatically outperform current stateof-the-art. Our proposed methods improve state-of-the-artperson re-identification on: Market-1501 [48] by ~17% inmAP and ~6% in rank-1, CUHK03 [24] by ~4% in rank-1and DukeMTMC-reID [50] by ~24% in mAP and ~10% inrank-1.
dc.description.sponsorship Computer Vision Foundation
dc.identifier.citation Mahdi M. Kalayeh, Emrah Basaran, Muhittin Gökmen, Mustafa E. Kamasak, Mubarak Shah; The IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2018, pp. 1062-1071
dc.identifier.doi 10.1109/CVPR.2018.00117
dc.identifier.scopus 2-s2.0-85062847826
dc.identifier.uri https://hdl.handle.net/20.500.11779/407
dc.identifier.uri https://bit.ly/2GAu7vS
dc.language.iso en
dc.relation.ispartof IEEE Conference on Computer Vision and Pattern Recognition (CVPR)
dc.rights info:eu-repo/semantics/openAccess
dc.subject Computer vision
dc.subject Person re-identification
dc.title Human Semantic Parsing for Person Re-Identification
dc.type Conference Object
dspace.entity.type Publication
gdc.author.id Muhittin Gökmen / 0000-0001-7290-199X
gdc.author.institutional Gökmen, Muhittin
gdc.bip.impulseclass C2
gdc.bip.influenceclass C3
gdc.bip.popularityclass C2
gdc.coar.access open access
gdc.coar.type text::conference output
gdc.description.department Mühendislik Fakültesi, Bilgisayar Mühendisliği Bölümü
gdc.description.endpage 1071
gdc.description.issue 2018
gdc.description.publicationcategory Konferans Öğesi - Uluslararası - Kurum Öğretim Elemanı
gdc.description.scopusquality N/A
gdc.description.startpage 1062
gdc.description.woscitationindex Conference Proceedings Citation Index - Science
gdc.description.wosquality N/A
gdc.identifier.openalex W2796364723
gdc.identifier.wos WOS:000457843601020
gdc.index.type WoS
gdc.index.type Scopus
gdc.oaire.diamondjournal false
gdc.oaire.downloads 0
gdc.oaire.impulse 239.0
gdc.oaire.influence 3.2605573E-8
gdc.oaire.isgreen true
gdc.oaire.keywords FOS: Computer and information sciences
gdc.oaire.keywords Person re-identification
gdc.oaire.keywords Computer Vision and Pattern Recognition (cs.CV)
gdc.oaire.keywords Computer Science - Computer Vision and Pattern Recognition
gdc.oaire.keywords Computer vision
gdc.oaire.popularity 3.6218665E-7
gdc.oaire.publicfunded false
gdc.oaire.sciencefields 03 medical and health sciences
gdc.oaire.sciencefields 0302 clinical medicine
gdc.oaire.sciencefields 0202 electrical engineering, electronic engineering, information engineering
gdc.oaire.sciencefields 02 engineering and technology
gdc.oaire.views 3
gdc.openalex.collaboration International
gdc.openalex.fwci 12.70566347
gdc.openalex.normalizedpercentile 0.98
gdc.openalex.toppercent TOP 10%
gdc.opencitations.count 428
gdc.plumx.crossrefcites 204
gdc.plumx.mendeley 258
gdc.plumx.scopuscites 652
gdc.publishedmonth Mart
gdc.scopus.citedcount 652
gdc.virtual.author Gökmen, Muhittin
gdc.wos.citedcount 536
gdc.wos.documenttype Proceedings Paper
gdc.wos.indexdate 2018
gdc.wos.publishedmonth Mart
gdc.yokperiod YÖK - 2017-18
relation.isAuthorOfPublication b2cb9802-db32-4c9c-88c4-8ee192b85b62
relation.isAuthorOfPublication.latestForDiscovery b2cb9802-db32-4c9c-88c4-8ee192b85b62
relation.isOrgUnitOfPublication 05ffa8cd-2a88-4676-8d3b-fc30eba0b7f3
relation.isOrgUnitOfPublication 0d54cd31-4133-46d5-b5cc-280b2c077ac3
relation.isOrgUnitOfPublication a6e60d5c-b0c7-474a-b49b-284dc710c078
relation.isOrgUnitOfPublication.latestForDiscovery 05ffa8cd-2a88-4676-8d3b-fc30eba0b7f3

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Kalayeh_Human_Semantic_Parsing_CVPR_2018_paper.pdf
Size:
1.73 MB
Format:
Adobe Portable Document Format
Description:
Yayıncı Sürümü - Proceedings Paper

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.5 KB
Format:
Item-specific license agreed upon to submission
Description: