Fault Detection Model Using Measurement Data in Fiber Optic Internet Lines

dc.contributor.author Çakar, Tuna
dc.contributor.author Savaş, Kerem
dc.contributor.author Battal, Eray
dc.contributor.author Özkan, Gözde
dc.date.accessioned 2024-01-25T08:13:44Z
dc.date.available 2024-01-25T08:13:44Z
dc.date.issued 2023
dc.description Index Tarihi : 19 Ocak 2024
dc.description.abstract In this study, a model has been developed to predict potential faults in advance based on performance metrics of various fiber-optic internet lines, as well as alarm (fault data) and performance measurement values from the 5 hours prior to the occurrence of the alarm. Performance metrics that vary over time have been analyzed in a time-series format based on alarm numbers, and anomaly detection methods have been used to label the data for any potential patterns that may occur in the performance metrics specific to the alarm. The labeled data was then fed into a classification model to create a model that enables to detect possible patterns in the relevant performance values for the specific fault type. The best performing model was Random Forest Classifier with accuracy and F1 scores of 0.89 and 0.84 respectively.
dc.identifier.citation Battal, E., Ozkan, G., Savas, K., & Cakar, T. (2023). Fault detection model using measurement data in fiber optic internet lines. In 2023 4th International Informatics and Software Engineering Conference. IEEE. pp.1-4.
dc.identifier.doi 10.1109/IISEC59749.2023.10391036
dc.identifier.isbn 9798350318036
dc.identifier.scopus 2-s2.0-85184665277
dc.identifier.uri https://doi.org/10.1109/IISEC59749.2023.10391036
dc.identifier.uri https://hdl.handle.net/20.500.11779/2219
dc.language.iso en
dc.publisher IEEE
dc.relation.ispartof 2023 4th International Informatics and Software Engineering Conference (IISEC)
dc.rights info:eu-repo/semantics/closedAccess
dc.subject Random forest classifier
dc.subject Time series
dc.subject Fiber optic internet lines
dc.subject Predictive maintenance
dc.subject Machine learning
dc.subject Anomaly detection
dc.title Fault Detection Model Using Measurement Data in Fiber Optic Internet Lines
dc.type Conference Object
dspace.entity.type Publication
gdc.author.id Tuna Çakar / 0000-0001-8594-7399
gdc.author.institutional Çakar, Tuna
gdc.bip.impulseclass C5
gdc.bip.influenceclass C5
gdc.bip.popularityclass C5
gdc.coar.access metadata only access
gdc.coar.type text::conference output
gdc.description.department Mühendislik Fakültesi, Bilgisayar Mühendisliği Bölümü
gdc.description.endpage 4
gdc.description.publicationcategory Konferans Öğesi - Ulusal - Kurum Öğretim Elemanı
gdc.description.scopusquality N/A
gdc.description.startpage 1
gdc.description.wosquality N/A
gdc.identifier.openalex W4391021464
gdc.index.type Scopus
gdc.oaire.diamondjournal false
gdc.oaire.impulse 0.0
gdc.oaire.influence 2.5942106E-9
gdc.oaire.isgreen false
gdc.oaire.popularity 2.5427536E-9
gdc.oaire.publicfunded false
gdc.openalex.collaboration National
gdc.openalex.fwci 0.0
gdc.openalex.normalizedpercentile 0.19
gdc.opencitations.count 0
gdc.plumx.mendeley 4
gdc.plumx.scopuscites 0
gdc.publishedmonth Kasım
gdc.relation.journal 2023 4th International Informatics and Software Engineering Conference
gdc.scopus.citedcount 0
gdc.virtual.author Çakar, Tuna
gdc.wos.publishedmonth Kasım
gdc.yokperiod YÖK - 2023-24
relation.isAuthorOfPublication 10f8ce3b-94c2-40f0-9381-0725723768fe
relation.isAuthorOfPublication.latestForDiscovery 10f8ce3b-94c2-40f0-9381-0725723768fe
relation.isOrgUnitOfPublication 05ffa8cd-2a88-4676-8d3b-fc30eba0b7f3
relation.isOrgUnitOfPublication 0d54cd31-4133-46d5-b5cc-280b2c077ac3
relation.isOrgUnitOfPublication a6e60d5c-b0c7-474a-b49b-284dc710c078
relation.isOrgUnitOfPublication.latestForDiscovery 05ffa8cd-2a88-4676-8d3b-fc30eba0b7f3

Files

Original bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
as323sadas_d23.pdf
Size:
3.33 MB
Format:
Adobe Portable Document Format
Description:
Proceedings Paper

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.44 KB
Format:
Item-specific license agreed upon to submission
Description: