High-Performance Real-Time Data Processing: Managing Data Using Debezium, Postgres, Kafka, and Redis

dc.contributor.author Çakar, Tuna
dc.contributor.author Ertuğrul, Seyit
dc.contributor.author Arslan, Şuayip
dc.contributor.author Sayar, Alperen
dc.contributor.author Akçay, Ahmet
dc.date.accessioned 2023-11-16T05:40:32Z
dc.date.available 2023-11-16T05:40:32Z
dc.date.issued 2023
dc.description.abstract This research focuses on monitoring and transferring logs of operations performed on a relational database, specifically PostgreSQL, in real-time using an event-driven approach. The logs generated from database operations are transferred using Apache Kafka, an open-source message queuing system, and Debezium running on Kafka, to Redis, a non-relational (No-SQL) key-value database. Time-consuming query operations and read operations are performed on Redis, which operates on memory (in-memory), instead of on the primary database, PostgreSQL. This approach has significantly improved query execution performance, data processing time, and backend service performance. The study showcases the practical application of an event-driven approach using Debezium, Kafka, Redis, and relational databases for real-time data processing and querying.
dc.identifier.citation Sayar, A., Arslan, Ş., Çakar, T., Ertuğrul, S., & Akçay, A. (2023, October). High-Performance Real-Time Data Processing: Managing Data Using Debezium, Postgres, Kafka, and Redis. In 2023 Innovations in Intelligent Systems and Applications Conference (ASYU) (pp. 1-4). IEEE.
dc.identifier.doi 10.1109/ASYU58738.2023.10296737
dc.identifier.isbn 9798350306590
dc.identifier.issn 2770-7946
dc.identifier.scopus 2-s2.0-85178276920
dc.identifier.uri https://hdl.handle.net/20.500.11779/2119
dc.identifier.uri https://doi.org/10.1109/ASYU58738.2023.10296737
dc.language.iso tr
dc.publisher IEEE
dc.relation.ispartof 2023 Innovations in Intelligent Systems and Applications Conference (ASYU)
dc.rights info:eu-repo/semantics/closedAccess
dc.subject Real-time systems
dc.subject Redis
dc.subject Monitoring
dc.subject Technological innovation
dc.subject Relational databases
dc.subject Intelligent systems
dc.subject Data processing
dc.subject Kafka
dc.subject Debezium
dc.subject Event-driven
dc.title High-Performance Real-Time Data Processing: Managing Data Using Debezium, Postgres, Kafka, and Redis
dc.type Conference Object
dspace.entity.type Publication
gdc.author.id Tuna Çakar / 0000000185947399
gdc.author.institutional Çakar, Tuna
gdc.bip.impulseclass C5
gdc.bip.influenceclass C4
gdc.bip.popularityclass C4
gdc.coar.access metadata only access
gdc.coar.type text::conference output
gdc.description.department Mühendislik Fakültesi, Bilgisayar Mühendisliği Bölümü
gdc.description.endpage 4
gdc.description.publicationcategory Konferans Öğesi - Ulusal - Kurum Öğretim Elemanı
gdc.description.scopusquality N/A
gdc.description.startpage 1
gdc.description.wosquality N/A
gdc.identifier.openalex W4388041570
gdc.index.type Scopus
gdc.oaire.diamondjournal false
gdc.oaire.impulse 2.0
gdc.oaire.influence 3.5418113E-9
gdc.oaire.isgreen false
gdc.oaire.popularity 9.541206E-9
gdc.oaire.publicfunded false
gdc.openalex.collaboration International
gdc.openalex.fwci 2.19776146
gdc.openalex.normalizedpercentile 0.78
gdc.opencitations.count 0
gdc.plumx.mendeley 10
gdc.plumx.scopuscites 5
gdc.publishedmonth Ekim
gdc.relation.journal 2023 Innovations in intelligent systems and applications conference (ASYU)
gdc.scopus.citedcount 5
gdc.virtual.author Çakar, Tuna
gdc.wos.publishedmonth Ekim
gdc.yokperiod YÖK - 2023-24
relation.isAuthorOfPublication 10f8ce3b-94c2-40f0-9381-0725723768fe
relation.isAuthorOfPublication.latestForDiscovery 10f8ce3b-94c2-40f0-9381-0725723768fe
relation.isOrgUnitOfPublication 05ffa8cd-2a88-4676-8d3b-fc30eba0b7f3
relation.isOrgUnitOfPublication 0d54cd31-4133-46d5-b5cc-280b2c077ac3
relation.isOrgUnitOfPublication a6e60d5c-b0c7-474a-b49b-284dc710c078
relation.isOrgUnitOfPublication.latestForDiscovery 05ffa8cd-2a88-4676-8d3b-fc30eba0b7f3

Files

Original bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
High-Performance_Real-Time_Data_.pdf
Size:
1.01 MB
Format:
Adobe Portable Document Format
Description:
Proceedings Paper

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.44 KB
Format:
Item-specific license agreed upon to submission
Description: