Predicting Customer Satisfaction Via Structed and Unstructured Data Using Classification and Regression

Loading...
Thumbnail Image

Date

2019

Journal Title

Journal ISSN

Volume Title

Publisher

MEF Üniversitesi, Fen Bilimleri Enstitüsü

Open Access Color

OpenAIRE Downloads

OpenAIRE Views

Research Projects

Journal Issue

Abstract

According to different studies, retaining existing customers is five or more times more costly than acquiring new ones. This study aim to understand what customers expect from an airline using machine techniques. Dataset is scraped from Skytrax’s Airline Quality website and consists of 65947 observations with 17 columns consisting of one free format column that includes customer review. In order to do predict whether a customer recommends an airline or not, we try to utilize classification and regression algorithms. In addition to insights, this study also aims to compare the performance of the models and viability of using only free text in order to predict customer satisfaction.
Farklı araştırmalara göre firmaların hali hazırdaki müşterilerini elinde tutması yeni müşteri kazanımına göre ortalama beş kat daha maliyetlidir. Bu çalışma makine öğrenmesi yoluyla ve kullanıcıların seçtiği alanlarla serbest metinleri kullanarak müşterilerin havayollarından beklentisini anlamayı amaçlamaktadır. Skytrax’in Airline Quality internet sitesinden alınan veri seti 65947 satır ve 17 sütuna sahiptir. Kullanıcıların bir havayolunu tavsiye edip etmediğini tahmin edebilmek için sınıflandırma ve regresyon algoritmaları kullanılmıştır. Yönetimsel bir kavrayış vermenin yanı sıra çalışma ayrıca farklı algoritmaların performansını karşılaştırmakta ve müşteri memnuniyetini tahmin etmek için serbest metin formatlarının uygunluğunu tartışmaktadır.

Description

Keywords

Skytrax, Airlines, Customer Satisfaction, Classification, Regression, Machine Learning, Havayolları, Müşteri Memnuniyet, Sınıflandırma, Regresyon, Makine Öğrenmesi

Turkish CoHE Thesis Center URL

Fields of Science

Citation

Danışman, E. (2019). Predicting customer satisfaction via structed and unstructured data using classification and regression, MEF Üniversitesi Fen Bilimleri Enstitüsü, İstanbul, Türkiye

WoS Q

N/A

Scopus Q

N/A

Source

Volume

Issue

Start Page

End Page

Google Scholar Logo
Google Scholar™

Sustainable Development Goals

3

GOOD HEALTH AND WELL-BEING
GOOD HEALTH AND WELL-BEING Logo

4

QUALITY EDUCATION
QUALITY EDUCATION Logo

5

GENDER EQUALITY
GENDER EQUALITY Logo

9

INDUSTRY, INNOVATION AND INFRASTRUCTURE
INDUSTRY, INNOVATION AND INFRASTRUCTURE Logo

10

REDUCED INEQUALITIES
REDUCED INEQUALITIES Logo