Predicting Credit Repayment Capacity With Machine Learning Models

dc.contributor.author Filiz, Gozde
dc.contributor.author Bodur, Tolga
dc.contributor.author Yaslidag, Nihal
dc.contributor.author Sayar, Alperen
dc.contributor.author Çakar, Tuna
dc.date.accessioned 2024-09-08T16:52:58Z
dc.date.available 2024-09-08T16:52:58Z
dc.date.issued 2024
dc.description.abstract This study examines the transformation in the financial services sector, particularly in banking, driven by the rapid development of technology and the widespread use of big data, and its impact on credit prediction processes. The developed credit prediction model aims to more accurately predict customers' credit repayment capacities. In pursuit of this goal, demographic and financial data along with credit histories of customers have been utilized to employ data preprocessing techniques and test various classification algorithms. Findings indicate that models developed with XGBoost and CATBoost algorithms exhibit the highest performance, while the effective use of feature engineering techniques is revealed to enhance the model's accuracy and reliability. The research highlights the potential for financial institutions to gain a competitive advantage in risk management and customer relationship management by leveraging machine learning models.
dc.identifier.doi 10.1109/SIU61531.2024.10601148
dc.identifier.isbn 9798350388978
dc.identifier.isbn 9798350388961
dc.identifier.issn 2165-0608
dc.identifier.scopus 2-s2.0-85200887297
dc.identifier.uri https://doi.org/10.1109/SIU61531.2024.10601148
dc.language.iso tr
dc.publisher Ieee
dc.relation.ispartof 32nd IEEE Signal Processing and Communications Applications Conference (SIU) -- MAY 15-18, 2024 -- Tarsus Univ Campus, Mersin, TURKEY
dc.relation.ispartofseries Signal Processing and Communications Applications Conference
dc.rights info:eu-repo/semantics/closedAccess
dc.subject Credit Prediction Models
dc.subject Machine Learning
dc.subject Risk Prediction
dc.title Predicting Credit Repayment Capacity With Machine Learning Models
dc.title.alternative Kredi Geri Ödeme Kapasitesinin Makine Öğrenimi Modelleriyle Tahmini
dc.type Conference Object
dspace.entity.type Publication
gdc.author.id Tuna Çakar / 0000-0001-8594-7399
gdc.author.institutional Çakar, Tuna
gdc.bip.impulseclass C5
gdc.bip.influenceclass C5
gdc.bip.popularityclass C5
gdc.coar.access metadata only access
gdc.coar.type text::conference output
gdc.description.department Mühendislik Fakültesi, Bilgisayar Mühendisliği Bölümü
gdc.description.endpage 4
gdc.description.publicationcategory Konferans Öğesi - Uluslararası - Kurum Öğretim Elemanı
gdc.description.scopusquality N/A
gdc.description.startpage 1
gdc.description.woscitationindex Conference Proceedings Citation Index - Science
gdc.description.wosquality N/A
gdc.identifier.openalex W4400908963
gdc.identifier.wos WOS:001297894700334
gdc.index.type WoS
gdc.index.type Scopus
gdc.oaire.diamondjournal false
gdc.oaire.impulse 0.0
gdc.oaire.influence 2.5942106E-9
gdc.oaire.isgreen false
gdc.oaire.popularity 2.9478422E-9
gdc.oaire.publicfunded false
gdc.openalex.fwci 0.0
gdc.openalex.normalizedpercentile 0.18
gdc.opencitations.count 0
gdc.plumx.mendeley 3
gdc.plumx.scopuscites 0
gdc.publishedmonth Temmuz
gdc.scopus.citedcount 0
gdc.virtual.author Çakar, Tuna
gdc.wos.citedcount 0
gdc.wos.publishedmonth Temmuz
gdc.yokperiod YÖK - 2023-24
relation.isAuthorOfPublication 10f8ce3b-94c2-40f0-9381-0725723768fe
relation.isAuthorOfPublication.latestForDiscovery 10f8ce3b-94c2-40f0-9381-0725723768fe
relation.isOrgUnitOfPublication 05ffa8cd-2a88-4676-8d3b-fc30eba0b7f3
relation.isOrgUnitOfPublication 0d54cd31-4133-46d5-b5cc-280b2c077ac3
relation.isOrgUnitOfPublication a6e60d5c-b0c7-474a-b49b-284dc710c078
relation.isOrgUnitOfPublication.latestForDiscovery 05ffa8cd-2a88-4676-8d3b-fc30eba0b7f3

Files

Original bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
Full Text - Article.pdf
Size:
234.97 KB
Format:
Adobe Portable Document Format