Customer churn prediction for the Pay-TV sector

dc.contributor.advisor Çakar, Tuna
dc.contributor.author Hataş, Tuğçe Aydın
dc.date.accessioned 2025-04-21T06:40:06Z
dc.date.available 2025-04-21T06:40:06Z
dc.date.issued 2023
dc.description.abstract Müşteri kaybı, şirketler için gelir kaybı ve yeni müşteri kazanımı için pazarlama maliyetleri yarattığından müşterilerin aboneliklerini neden sonlandırdıklarını anlamak, mevcut müşterileri elde tutmak açısından katma değer sağlamaktadır. Bu çalışma kapsamında Türkiye'de hizmet veren Pay-TV firmasının müşterilerinin 6 aylık geçmiş verileri kullanılmış ve veri setinin etiket bazında dengesiz olması sebebiyle aşırı örnekleme yöntemi de uygulanmıştır. Model geliştirme aşamasında farklı yapay öğrenme (Rassal Orman, Lojistik Regresyon, K-En Yakın Komşu, Karar Ağacı, AdaBoost, XGBoost, Ekstra Ağaç Sınıflandırıcı) algoritmaları kullanılmış ve model performansları karşılaştırılmıştır. Her bir model için başarı kriterleri incelenerek bu veri seti için en yüksek performans gösteren modellerin ağaç-bazlı Rassal Orman, Ekstra Ağaç Sınıflandırıcı ve XGBoost olduğu görülmüştür.
dc.description.abstract Understanding the reasons for customer churn provides added value in terms of retaining existing customers, as customer attrition leads to revenue loss for companies and incurs marketing costs for acquiring new customers. In this study, the 6-month historical data of a Pay-TV company operating in Turkey was used, and due to the imbalanced nature of the dataset on a label basis, the oversampling method was applied. During the model development phase, various artificial learning algorithms (Random Forest, Logistic Regression, K-Nearest Neighbors, Decision Tree, AdaBoost, XGBoost, Extra Tree Classifier) were utilized, and their performances were compared. Based on the evaluation of success criteria for each model, it was observed that the tree-based Random Forest, Extra Tree Classifier and XGBoost achieved the highest performance for this dataset.
dc.identifier.uri https://tez.yok.gov.tr/UlusalTezMerkezi/TezGoster?key=weFMBHaUra8rsS5wi2bmHHU5K5QfLOSh5NOk9fGVgB1sb99Z12UFr-eVLlRM7rTl
dc.identifier.uri https://hdl.handle.net/20.500.11779/2554
dc.language.iso en
dc.publisher MEF Üniversitesi
dc.rights info:eu-repo/semantics/openAccess
dc.subject Bilgisayar Mühendisliği Bilimleri-Bilgisayar ve Kontrol
dc.subject Computer Engineering and Computer Science and Control
dc.title Customer churn prediction for the Pay-TV sector
dc.title.alternative Pay-TVsektöründe müşteri kayıp tahmini
dc.type Master Thesis
dspace.entity.type Publication
gdc.author.institutional Hataş, Tuğçe Aydın
gdc.author.institutional Çakar, Tuna
gdc.coar.access open access
gdc.coar.type text::thesis::master thesis
gdc.description.department Enstitüler, Fen Bilimleri Enstitüsü, Bilişim Teknolojileri Ana Bilim Dalı
gdc.description.endpage 50
gdc.description.publicationcategory Tez
gdc.description.startpage 1
gdc.identifier.yoktezid 845946
relation.isAuthorOfPublication 10f8ce3b-94c2-40f0-9381-0725723768fe
relation.isAuthorOfPublication.latestForDiscovery 10f8ce3b-94c2-40f0-9381-0725723768fe
relation.isOrgUnitOfPublication 05ffa8cd-2a88-4676-8d3b-fc30eba0b7f3
relation.isOrgUnitOfPublication 0d54cd31-4133-46d5-b5cc-280b2c077ac3
relation.isOrgUnitOfPublication a6e60d5c-b0c7-474a-b49b-284dc710c078
relation.isOrgUnitOfPublication.latestForDiscovery 05ffa8cd-2a88-4676-8d3b-fc30eba0b7f3

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
845946.pdf
Size:
1.54 MB
Format:
Adobe Portable Document Format

Collections