Analyzing Customer Churn: a Comparative Study of Machine Learning Models on Pay-Tv Subscribers in Turkey

dc.contributor.author Obalı, Emir
dc.contributor.author Çalışkan, Sibel Kırmızıgül
dc.contributor.author Karani Yılmaz, Veysel
dc.contributor.author Kara, Erkan
dc.contributor.author Meşe, Yasemin Kürtcü
dc.contributor.author Çakar, Tuna
dc.contributor.author Yıldız, Ayşenur
dc.contributor.author Hataş, Tuğce Aydın
dc.date.accessioned 2024-02-28T12:04:36Z
dc.date.available 2024-02-28T12:04:36Z
dc.date.issued 2023
dc.description.abstract Understanding the reasons for customer churn provides added value in terms of retaining existing customers, as customer attrition leads to revenue loss for companies and incurs marketing costs for acquiring new customers. In this study, the 6-month historical data of a Pay-TV company operating in Turkey was used, and due to the imbalanced nature of the dataset on a label basis, the oversampling method was applied. During the model development phase, various artificial learning algorithms (Random Forest, Logistic Regression, KNearest Neighbors, Decision Tree, AdaBoost, XGBoost, Extra Tree Classifier) were utilized, and their performances were compared. Based on the evaluation of success criteria for each model, it was observed that the tree-based Random Forest, Extra Tree Classifier and XGBoost achieved the highest performance for this dataset.
dc.identifier.citation Hatas, T.A.,Obali, E.,Yildiz, A., Caliskan, S.K., Yilmaz, V. K., Kara, E., Mese, Y.K., Cakar, T. (Eylül 2023). Analyzing customer churn: A comparative study of machine learning models on Pay-TV subscribers in Turkey. IEEE. pp.1-6.
dc.identifier.doi 10.1109/IISEC59749.2023.10390998
dc.identifier.isbn 9798350318036
dc.identifier.scopus 2-s2.0-85184666022
dc.identifier.uri https://doi.org/10.1109/IISEC59749.2023.10390998
dc.identifier.uri https://hdl.handle.net/20.500.11779/2255
dc.language.iso en
dc.publisher IEEE
dc.relation.ispartof 2023 4th International Informatics and Software Engineering Conference (IISEC)
dc.rights info:eu-repo/semantics/closedAccess
dc.subject Pay-tv industry
dc.subject Customer retention
dc.subject Machine learning
dc.subject Churn prediction
dc.subject Customer churn
dc.title Analyzing Customer Churn: a Comparative Study of Machine Learning Models on Pay-Tv Subscribers in Turkey
dc.type Conference Object
dspace.entity.type Publication
gdc.author.id Tuna Çakar / 0000000185947399
gdc.author.institutional Çakar, Tuna
gdc.bip.impulseclass C5
gdc.bip.influenceclass C5
gdc.bip.popularityclass C5
gdc.coar.access metadata only access
gdc.coar.type text::conference output
gdc.description.department Mühendislik Fakültesi, Bilgisayar Mühendisliği Bölümü
gdc.description.endpage 6
gdc.description.publicationcategory Konferans Öğesi - Uluslararası - Kurum Öğretim Elemanı
gdc.description.scopusquality N/A
gdc.description.startpage 1
gdc.description.wosquality N/A
gdc.identifier.openalex W4391021368
gdc.index.type Scopus
gdc.oaire.diamondjournal false
gdc.oaire.impulse 0.0
gdc.oaire.influence 2.5942106E-9
gdc.oaire.isgreen false
gdc.oaire.popularity 2.5427536E-9
gdc.oaire.publicfunded false
gdc.openalex.collaboration National
gdc.openalex.fwci 0.0
gdc.openalex.normalizedpercentile 0.28
gdc.opencitations.count 0
gdc.plumx.mendeley 4
gdc.plumx.scopuscites 0
gdc.publishedmonth Eylül
gdc.relation.journal 4th International Informatics and Software Engineering Conference - Symposium Program
gdc.scopus.citedcount 0
gdc.virtual.author Çakar, Tuna
gdc.wos.publishedmonth Eylül
gdc.yokperiod YÖK - 2023-24
relation.isAuthorOfPublication 10f8ce3b-94c2-40f0-9381-0725723768fe
relation.isAuthorOfPublication.latestForDiscovery 10f8ce3b-94c2-40f0-9381-0725723768fe
relation.isOrgUnitOfPublication 05ffa8cd-2a88-4676-8d3b-fc30eba0b7f3
relation.isOrgUnitOfPublication 0d54cd31-4133-46d5-b5cc-280b2c077ac3
relation.isOrgUnitOfPublication a6e60d5c-b0c7-474a-b49b-284dc710c078
relation.isOrgUnitOfPublication.latestForDiscovery 05ffa8cd-2a88-4676-8d3b-fc30eba0b7f3

Files

Original bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
873827324.pdf
Size:
3.89 MB
Format:
Adobe Portable Document Format
Description:
Proceeding Paper

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.44 KB
Format:
Item-specific license agreed upon to submission
Description: