An Efficient Framework for Visible-Infrared Cross Modality Person Re-Identification
| dc.contributor.author | Gökmen, Muhittin | |
| dc.contributor.author | Başaran, Emrah | |
| dc.contributor.author | Kamasak, Mustafa E. | |
| dc.date.accessioned | 2020-08-07T04:42:16Z | |
| dc.date.available | 2020-08-07T04:42:16Z | |
| dc.date.issued | 2020 | |
| dc.description.abstract | Visible-infrared cross-modality person re-identification (VI-ReId) is an essential task for video surveillance in poorly illuminated or dark environments. Despite many recent studies on person re-identification in the visible domain (ReId), there are few studies dealing specifically with VI-ReId. Besides challenges that are common for both ReId and VI-ReId such as pose/illumination variations, background clutter and occlusion, VI-ReId has additional challenges as color information is not available in infrared images. As a result, the performance of VI-ReId systems is typically lower than that of ReId systems. In this work, we propose a four-stream framework to improve VI-ReId performance. We train a separate deep convolutional neural network in each stream using different representations of input images. We expect that different and complementary features can be learned from each stream. In our framework, grayscale and infrared input images are used to train the ResNet in the first stream. In the second stream, RGB and three-channel infrared images (created by repeating the infrared channel) are used. In the remaining two streams, we use local pattern maps as input images. These maps are generated utilizing local Zernike moments transformation. Local pattern maps are obtained from grayscale and infrared images in the third stream and from RGB and three-channel infrared images in the last stream. We improve the performance of the proposed framework by employing a re-ranking algorithm for post-processing. Our results indicate that the proposed framework outperforms current state-of-the-art with a large margin by improving Rank-1/mAP by 29.79%/30.91% on SYSU-MM01 dataset, and by 9.73%/16.36% on RegDB dataset. | |
| dc.identifier.citation | Basaran, E., Gökmen, M., & Kamasak, M. E. (September 01, 2020). An efficient framework for visible-infrared cross modality person re-identification. Signal Processing: Image Communication, 87. pp. 1-11. | |
| dc.identifier.doi | 10.1016/j.image.2020.115933 | |
| dc.identifier.issn | 0923-5965 | |
| dc.identifier.issn | 1879-2677 | |
| dc.identifier.scopus | 2-s2.0-85087420174 | |
| dc.identifier.uri | https://hdl.handle.net/20.500.11779/1346 | |
| dc.identifier.uri | https://doi.org/10.1016/j.image.2020.115933 | |
| dc.language.iso | en | |
| dc.publisher | Elsevier | |
| dc.relation.ispartof | Signal Processing: Image Communication | |
| dc.rights | info:eu-repo/semantics/openAccess | |
| dc.subject | Cross modality person re-identification | |
| dc.subject | Local zernike moments | |
| dc.subject | Person re-identification | |
| dc.title | An Efficient Framework for Visible-Infrared Cross Modality Person Re-Identification | |
| dc.type | Article | |
| dspace.entity.type | Publication | |
| gdc.author.id | Muhittin Gökmen / 0000-0001-7290-199X | |
| gdc.author.institutional | Gökmen, Muhittin | |
| gdc.bip.impulseclass | C4 | |
| gdc.bip.influenceclass | C4 | |
| gdc.bip.popularityclass | C4 | |
| gdc.coar.access | open access | |
| gdc.coar.type | text::journal::journal article | |
| gdc.description.department | Mühendislik Fakültesi, Bilgisayar Mühendisliği Bölümü | |
| gdc.description.endpage | 11 | |
| gdc.description.publicationcategory | Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı | |
| gdc.description.scopusquality | Q1 | |
| gdc.description.startpage | 1 | |
| gdc.description.volume | 87 | |
| gdc.description.woscitationindex | Science Citation Index Expanded | |
| gdc.description.wosquality | Q2 | |
| gdc.identifier.openalex | W2958063640 | |
| gdc.identifier.wos | WOS:000551127300017 | |
| gdc.index.type | WoS | |
| gdc.index.type | Scopus | |
| gdc.oaire.accesstype | HYBRID | |
| gdc.oaire.diamondjournal | false | |
| gdc.oaire.impulse | 27.0 | |
| gdc.oaire.influence | 4.9538893E-9 | |
| gdc.oaire.isgreen | true | |
| gdc.oaire.keywords | FOS: Computer and information sciences | |
| gdc.oaire.keywords | Cross modality person re-identification | |
| gdc.oaire.keywords | Person re-identification | |
| gdc.oaire.keywords | Local Zernike moments | |
| gdc.oaire.keywords | Computer Vision and Pattern Recognition (cs.CV) | |
| gdc.oaire.keywords | Computer Science - Computer Vision and Pattern Recognition | |
| gdc.oaire.popularity | 3.3575624E-8 | |
| gdc.oaire.publicfunded | false | |
| gdc.oaire.sciencefields | 0202 electrical engineering, electronic engineering, information engineering | |
| gdc.oaire.sciencefields | 02 engineering and technology | |
| gdc.openalex.collaboration | National | |
| gdc.openalex.fwci | 3.35895417 | |
| gdc.openalex.normalizedpercentile | 0.93 | |
| gdc.openalex.toppercent | TOP 10% | |
| gdc.opencitations.count | 30 | |
| gdc.plumx.crossrefcites | 32 | |
| gdc.plumx.mendeley | 32 | |
| gdc.plumx.scopuscites | 41 | |
| gdc.publishedmonth | Eylül | |
| gdc.scopus.citedcount | 41 | |
| gdc.virtual.author | Gökmen, Muhittin | |
| gdc.wos.citedcount | 29 | |
| gdc.wos.collaboration | Uluslararası işbirliği ile yapılmayan - HAYIR | |
| gdc.wos.documenttype | Article | |
| gdc.wos.indexdate | 2020 | |
| gdc.wos.publishedmonth | Eylül | |
| gdc.yokperiod | YÖK - 2020-21 | |
| relation.isAuthorOfPublication | b2cb9802-db32-4c9c-88c4-8ee192b85b62 | |
| relation.isAuthorOfPublication.latestForDiscovery | b2cb9802-db32-4c9c-88c4-8ee192b85b62 | |
| relation.isOrgUnitOfPublication | 05ffa8cd-2a88-4676-8d3b-fc30eba0b7f3 | |
| relation.isOrgUnitOfPublication | 0d54cd31-4133-46d5-b5cc-280b2c077ac3 | |
| relation.isOrgUnitOfPublication | a6e60d5c-b0c7-474a-b49b-284dc710c078 | |
| relation.isOrgUnitOfPublication.latestForDiscovery | 05ffa8cd-2a88-4676-8d3b-fc30eba0b7f3 |
Files
Original bundle
1 - 1 of 1
Loading...
- Name:
- An efficient framework for visible.pdf
- Size:
- 1.25 MB
- Format:
- Adobe Portable Document Format
- Description:
- Tam Metin / Full Text
License bundle
1 - 1 of 1
No Thumbnail Available
- Name:
- license.txt
- Size:
- 1.44 KB
- Format:
- Item-specific license agreed upon to submission
- Description:
