An Efficient Framework for Visible-Infrared Cross Modality Person Re-Identification

dc.contributor.author Gökmen, Muhittin
dc.contributor.author Başaran, Emrah
dc.contributor.author Kamasak, Mustafa E.
dc.date.accessioned 2020-08-07T04:42:16Z
dc.date.available 2020-08-07T04:42:16Z
dc.date.issued 2020
dc.description.abstract Visible-infrared cross-modality person re-identification (VI-ReId) is an essential task for video surveillance in poorly illuminated or dark environments. Despite many recent studies on person re-identification in the visible domain (ReId), there are few studies dealing specifically with VI-ReId. Besides challenges that are common for both ReId and VI-ReId such as pose/illumination variations, background clutter and occlusion, VI-ReId has additional challenges as color information is not available in infrared images. As a result, the performance of VI-ReId systems is typically lower than that of ReId systems. In this work, we propose a four-stream framework to improve VI-ReId performance. We train a separate deep convolutional neural network in each stream using different representations of input images. We expect that different and complementary features can be learned from each stream. In our framework, grayscale and infrared input images are used to train the ResNet in the first stream. In the second stream, RGB and three-channel infrared images (created by repeating the infrared channel) are used. In the remaining two streams, we use local pattern maps as input images. These maps are generated utilizing local Zernike moments transformation. Local pattern maps are obtained from grayscale and infrared images in the third stream and from RGB and three-channel infrared images in the last stream. We improve the performance of the proposed framework by employing a re-ranking algorithm for post-processing. Our results indicate that the proposed framework outperforms current state-of-the-art with a large margin by improving Rank-1/mAP by 29.79%/30.91% on SYSU-MM01 dataset, and by 9.73%/16.36% on RegDB dataset.
dc.identifier.citation Basaran, E., Gökmen, M., & Kamasak, M. E. (September 01, 2020). An efficient framework for visible-infrared cross modality person re-identification. Signal Processing: Image Communication, 87. pp. 1-11.
dc.identifier.doi 10.1016/j.image.2020.115933
dc.identifier.issn 0923-5965
dc.identifier.issn 1879-2677
dc.identifier.scopus 2-s2.0-85087420174
dc.identifier.uri https://hdl.handle.net/20.500.11779/1346
dc.identifier.uri https://doi.org/10.1016/j.image.2020.115933
dc.language.iso en
dc.publisher Elsevier
dc.relation.ispartof Signal Processing: Image Communication
dc.rights info:eu-repo/semantics/openAccess
dc.subject Cross modality person re-identification
dc.subject Local zernike moments
dc.subject Person re-identification
dc.title An Efficient Framework for Visible-Infrared Cross Modality Person Re-Identification
dc.type Article
dspace.entity.type Publication
gdc.author.id Muhittin Gökmen / 0000-0001-7290-199X
gdc.author.institutional Gökmen, Muhittin
gdc.bip.impulseclass C4
gdc.bip.influenceclass C4
gdc.bip.popularityclass C4
gdc.coar.access open access
gdc.coar.type text::journal::journal article
gdc.description.department Mühendislik Fakültesi, Bilgisayar Mühendisliği Bölümü
gdc.description.endpage 11
gdc.description.publicationcategory Makale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanı
gdc.description.scopusquality Q1
gdc.description.startpage 1
gdc.description.volume 87
gdc.description.woscitationindex Science Citation Index Expanded
gdc.description.wosquality Q2
gdc.identifier.openalex W2958063640
gdc.identifier.wos WOS:000551127300017
gdc.index.type WoS
gdc.index.type Scopus
gdc.oaire.accesstype HYBRID
gdc.oaire.diamondjournal false
gdc.oaire.impulse 27.0
gdc.oaire.influence 4.9538893E-9
gdc.oaire.isgreen true
gdc.oaire.keywords FOS: Computer and information sciences
gdc.oaire.keywords Cross modality person re-identification
gdc.oaire.keywords Person re-identification
gdc.oaire.keywords Local Zernike moments
gdc.oaire.keywords Computer Vision and Pattern Recognition (cs.CV)
gdc.oaire.keywords Computer Science - Computer Vision and Pattern Recognition
gdc.oaire.popularity 3.3575624E-8
gdc.oaire.publicfunded false
gdc.oaire.sciencefields 0202 electrical engineering, electronic engineering, information engineering
gdc.oaire.sciencefields 02 engineering and technology
gdc.openalex.collaboration National
gdc.openalex.fwci 3.35895417
gdc.openalex.normalizedpercentile 0.93
gdc.openalex.toppercent TOP 10%
gdc.opencitations.count 30
gdc.plumx.crossrefcites 32
gdc.plumx.mendeley 32
gdc.plumx.scopuscites 41
gdc.publishedmonth Eylül
gdc.scopus.citedcount 41
gdc.virtual.author Gökmen, Muhittin
gdc.wos.citedcount 29
gdc.wos.collaboration Uluslararası işbirliği ile yapılmayan - HAYIR
gdc.wos.documenttype Article
gdc.wos.indexdate 2020
gdc.wos.publishedmonth Eylül
gdc.yokperiod YÖK - 2020-21
relation.isAuthorOfPublication b2cb9802-db32-4c9c-88c4-8ee192b85b62
relation.isAuthorOfPublication.latestForDiscovery b2cb9802-db32-4c9c-88c4-8ee192b85b62
relation.isOrgUnitOfPublication 05ffa8cd-2a88-4676-8d3b-fc30eba0b7f3
relation.isOrgUnitOfPublication 0d54cd31-4133-46d5-b5cc-280b2c077ac3
relation.isOrgUnitOfPublication a6e60d5c-b0c7-474a-b49b-284dc710c078
relation.isOrgUnitOfPublication.latestForDiscovery 05ffa8cd-2a88-4676-8d3b-fc30eba0b7f3

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
An efficient framework for visible.pdf
Size:
1.25 MB
Format:
Adobe Portable Document Format
Description:
Tam Metin / Full Text

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.44 KB
Format:
Item-specific license agreed upon to submission
Description: