Customer transaction predictive modeling via machine learning algorithms

dc.contributor.advisor Çakar, Tuna
dc.contributor.author Ertuğrul, Seyit
dc.date.accessioned 2025-04-21T06:40:08Z
dc.date.available 2025-04-21T06:40:08Z
dc.date.issued 2023
dc.description.abstract The main purpose of this study is to determine the behavior and characteristics of the customers of a company that is active in the factoring sector, and accordingly, to capture measurable parameters with exploratory data analysis based on the historical data of the customers, and then to perform predictive models for the target. A hit rate of around 80% was achieved in SVM and Extra Trees models, which are classification model algorithms. In this way, it is aimed to directly contribute to the transaction volume on a business basis by acting in a more effective, efficient and correct approach after approving the check that shows high potential, that is, the customers who are likely to accept it after the offer is made as a business.
dc.description.abstract Bu çalışmanın temel amacı faktoring sektöründe aktif olarak faaliyet gösteren bir şirketin müşterilerinin davranışlarını ve özelliklerini saptayabilmek, buna bağlı olarak da müşterilerin geçmiş verilerinden yola çıkarak, keşifçi veri analiziyle ölçülebilir parametreler yakalayabilmek ve akabinde hedefe yönelik tahminsel modellemeler gerçekleştirebilmektir. Sınıflandırma modeli algoritmalarından SVM ve Extra Trees modellerinde %80 seviyesi üzerinde isabet oranı yakalanmıştır. Bu sayede yüksek potansiyel gösteren, yani sorgulattığı çeki, işletme olarak onayladıktan ve teklif yapıldıktan sonra kabul etme ihtimali yüksek olan müşterileri tahmin edilmesi daha etkin, verimli ve doğru yaklaşımlar içerisinde hareket edip aksiyon alarak, işletme bazında işlem hacmine doğrudan katkısı sağlanması amaçlanmıştır.
dc.identifier.uri https://tez.yok.gov.tr/UlusalTezMerkezi/TezGoster?key=G_oJ1rKE4SgJUkomyAKpR7i0vstEUZRmF34_Kdp3VzR-Bp1RJ4giHHd9g1p_UkbV
dc.identifier.uri https://hdl.handle.net/20.500.11779/2564
dc.language.iso en
dc.publisher MEF Üniversitesi
dc.rights info:eu-repo/semantics/openAccess
dc.subject Bilim ve Teknoloji
dc.subject Science and Technology
dc.title Customer transaction predictive modeling via machine learning algorithms
dc.title.alternative Yapay öğrenme yöntemleri ile müşteri işlem tahmini modeli
dc.type Master Thesis
dspace.entity.type Publication
gdc.author.institutional Ertuğrul, Seyit
gdc.author.institutional Çakar, Tuna
gdc.coar.access open access
gdc.coar.type text::thesis::master thesis
gdc.description.department Enstitüler, Fen Bilimleri Enstitüsü, Bilişim Teknolojileri Ana Bilim Dalı
gdc.description.endpage 50
gdc.description.publicationcategory Tez
gdc.description.startpage 1
gdc.identifier.yoktezid 790652
relation.isAuthorOfPublication 10f8ce3b-94c2-40f0-9381-0725723768fe
relation.isAuthorOfPublication.latestForDiscovery 10f8ce3b-94c2-40f0-9381-0725723768fe
relation.isOrgUnitOfPublication 05ffa8cd-2a88-4676-8d3b-fc30eba0b7f3
relation.isOrgUnitOfPublication 0d54cd31-4133-46d5-b5cc-280b2c077ac3
relation.isOrgUnitOfPublication a6e60d5c-b0c7-474a-b49b-284dc710c078
relation.isOrgUnitOfPublication.latestForDiscovery 05ffa8cd-2a88-4676-8d3b-fc30eba0b7f3

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
790652.pdf
Size:
775.38 KB
Format:
Adobe Portable Document Format

Collections