Detecting Autism From Head Movements Using Kinesics

dc.contributor.author Gokmen, Muhittin
dc.contributor.author Sariyanidi, Evangelos
dc.contributor.author Yankowitz, Lisa
dc.contributor.author Zampella, Casey J.
dc.contributor.author Schultz, Robert T.
dc.contributor.author Tunc, Birkan
dc.date.accessioned 2025-01-05T18:25:05Z
dc.date.available 2025-01-05T18:25:05Z
dc.date.issued 2024
dc.description Yankowitz, Lisa/0000-0003-2604-5840; Gokmen, Muhittin/0000-0001-7290-199X; Schultz, Robert/0000-0001-9817-3425; Zampella, Casey/0000-0002-7973-8520
dc.description.abstract Head movements play a crucial role in social interactions. The quantification of communicative movements such as nodding, shaking, orienting, and backchanneling is significant in behavioral and mental health research. However, automated localization of such head movements within videos remains challenging in computer vision due to their arbitrary start and end times, durations, and frequencies. In this work, we introduce a novel and efficient coding system for head movements, grounded in Birdwhistell's kinesics theory, to automatically identify basic head motion units such as nodding and shaking. Our approach first defines the smallest unit of head movement, termed kine, based on the anatomical constraints of the neck and head. We then quantify the location, magnitude, and duration of kines within each angular component of head movement. Through defining possible combinations of identified kines, we define a higher-level construct, kineme, which corresponds to basic head motion units such as nodding and shaking. We validate the proposed framework by predicting autism spectrum disorder (ASD) diagnosis from video recordings of interacting partners. We show that the multi-scale property of the proposed framework provides a significant advantage, as collapsing behavior across temporal scales reduces performance consistently. Finally, we incorporate another fundamental behavioral modality, namely speech, and show that distinguishing between speaking- and listening-time head movements significantly improves ASD classification performance.
dc.description.sponsorship BIDEB2219 program of the Scientifc and Technological Research Council of Turkey (TUBITAK) [1059B192300279]; Ofce of the Director (OD); National Institute of Child Health and Human Development (NICHD); National Institute of Mental Health (NIMH) of US [R01MH118327, R01MH122599, 5P50HD105354-02, R21HD102078]; IDDRC at CHOP/Penn
dc.description.sponsorship The work of M. Gokmen is partially supported by the BIDEB2219 program of the Scientifc and Technological Research Council of Turkey (TUBITAK) under the grant #1059B192300279. The work of the other co-authors is partially supported by the Ofce of the Director (OD), National Institute of Child Health and Human Development (NICHD), and National Institute of Mental Health (NIMH) of US, under grants R01MH118327, R01MH122599, 5P50HD105354-02 and R21HD102078; and the IDDRC at CHOP/Penn.
dc.identifier.doi 10.1145/3678957.3685711
dc.identifier.isbn 9798400704628
dc.identifier.scopus 2-s2.0-85212589877
dc.identifier.uri https://hdl.handle.net/20.500.11779/2459
dc.language.iso en
dc.publisher Assoc Computing Machinery
dc.relation.ispartof Companion International Conference on Multimodal Interaction -- NOV 04-08, 2024 -- San Jose, COSTA RICA
dc.rights info:eu-repo/semantics/closedAccess
dc.subject Movements
dc.subject Kinesics
dc.subject Computer Vision
dc.subject Psychology
dc.subject Autism
dc.title Detecting Autism From Head Movements Using Kinesics
dc.type Conference Object
dspace.entity.type Publication
gdc.author.id Muhittin Gökmen / 0000-0001-7290-199X
gdc.author.id Yankowitz, Lisa/0000-0003-2604-5840
gdc.author.id Gokmen, Muhittin/0000-0001-7290-199X
gdc.author.id Schultz, Robert/0000-0001-9817-3425
gdc.author.id Zampella, Casey/0000-0002-7973-8520
gdc.author.institutional Gökmen, Muhittin
gdc.author.scopusid 55946709500
gdc.author.scopusid 43261751100
gdc.author.scopusid 57203241986
gdc.author.scopusid 57214989540
gdc.author.scopusid 7401556290
gdc.author.scopusid 36062061700
gdc.author.wosid Yankowitz, Lisa/Gwc-6975-2022
gdc.bip.impulseclass C5
gdc.bip.influenceclass C5
gdc.bip.popularityclass C5
gdc.coar.access metadata only access
gdc.coar.type text::conference output
gdc.description.department Mühendislik Fakültesi, Bilgisayar Mühendisligi Bölümü
gdc.description.endpage 354
gdc.description.publicationcategory Konferans Öğesi - Uluslararası - Kurum Öğretim Elemanı
gdc.description.scopusquality N/A
gdc.description.startpage 350
gdc.description.woscitationindex Conference Proceedings Citation Index - Science
gdc.description.wosquality N/A
gdc.identifier.openalex W4403913191
gdc.identifier.pmid 39525689
gdc.identifier.wos WOS:001433669800038
gdc.index.type WoS
gdc.index.type Scopus
gdc.index.type PubMed
gdc.oaire.diamondjournal false
gdc.oaire.impulse 3.0
gdc.oaire.influence 2.7025073E-9
gdc.oaire.isgreen true
gdc.oaire.popularity 2.951181E-9
gdc.oaire.publicfunded false
gdc.openalex.collaboration International
gdc.openalex.fwci 2.10840169
gdc.openalex.normalizedpercentile 0.78
gdc.opencitations.count 0
gdc.plumx.crossrefcites 2
gdc.plumx.mendeley 8
gdc.plumx.pubmedcites 1
gdc.plumx.scopuscites 3
gdc.publishedmonth Kasım
gdc.scopus.citedcount 3
gdc.virtual.author Gökmen, Muhittin
gdc.wos.citedcount 3
gdc.wos.publishedmonth Kasim
gdc.yokperiod YÖK - 2024-25
relation.isAuthorOfPublication b2cb9802-db32-4c9c-88c4-8ee192b85b62
relation.isAuthorOfPublication.latestForDiscovery b2cb9802-db32-4c9c-88c4-8ee192b85b62
relation.isOrgUnitOfPublication 05ffa8cd-2a88-4676-8d3b-fc30eba0b7f3
relation.isOrgUnitOfPublication 0d54cd31-4133-46d5-b5cc-280b2c077ac3
relation.isOrgUnitOfPublication a6e60d5c-b0c7-474a-b49b-284dc710c078
relation.isOrgUnitOfPublication.latestForDiscovery 05ffa8cd-2a88-4676-8d3b-fc30eba0b7f3

Files