Facial Emotion Recognition Using Residual Neural Networks

dc.contributor.author Kırbız, Serap
dc.date.accessioned 2024-12-05T18:22:54Z
dc.date.available 2024-12-05T18:22:54Z
dc.date.issued 2024
dc.description.abstract Facial emotion recognition (FER) has been an emerging research topic in recent years. Recent automatic FER systems generally apply deep learning methods and focus on two important issues: lack of sufficient labeled training data and variations in images such as illumination, pose, or expression-related variations among different cultures. Although Convolutional Neural Networks (CNNs) are widely used in automatic FER, they cannot be used when the number of layers is large. Therefore, a residual technique is applied to CNNs and this architecture is named residual neural network. In this paper, an automatic facial emotion recognition method using residual networks with random data augmentation is proposed on a merged FER dataset consisting of 41,598 facial images of size 48 × 48 pixels from seven basic emotion classes. Experimental results show that ResNet34 with data augmentation performs better than CNN with a classification accuracy of 81%.
dc.identifier.doi 10.5152/electrica.2024.24098
dc.identifier.issn 2619-9831
dc.identifier.scopus 2-s2.0-85208717593
dc.identifier.uri https://doi.org/10.5152/electrica.2024.24098
dc.identifier.uri https://search.trdizin.gov.tr/en/yayin/detay/1343494/facial-emotion-recognition-using-residual-neural-networks
dc.language.iso en
dc.relation.ispartof Electrica
dc.rights info:eu-repo/semantics/openAccess
dc.title Facial Emotion Recognition Using Residual Neural Networks
dc.type Article
dspace.entity.type Publication
gdc.author.id Kirbiz, Serap/0000-0001-7718-3683
gdc.author.institutional Kırbız, Serap
gdc.bip.impulseclass C5
gdc.bip.influenceclass C5
gdc.bip.popularityclass C5
gdc.coar.access open access
gdc.coar.type text::journal::journal article
gdc.description.department Mühendislik Fakültesi, Endüstri Mühendisliği Bölümü
gdc.description.endpage 825
gdc.description.issue 3
gdc.description.publicationcategory Makale - Ulusal Hakemli Dergi - Kurum Öğretim Elemanı
gdc.description.scopusquality Q3
gdc.description.startpage 818
gdc.description.volume 24
gdc.description.woscitationindex Emerging Sources Citation Index
gdc.description.wosquality Q4
gdc.identifier.openalex W4404290146
gdc.identifier.trdizinid 1343494
gdc.identifier.wos WOS:001409445600024
gdc.index.type WoS
gdc.index.type Scopus
gdc.index.type TR-Dizin
gdc.oaire.accesstype GOLD
gdc.oaire.diamondjournal false
gdc.oaire.impulse 1.0
gdc.oaire.influence 2.686861E-9
gdc.oaire.isgreen false
gdc.oaire.keywords Electrical engineering. Electronics. Nuclear engineering
gdc.oaire.keywords TK1-9971
gdc.oaire.popularity 2.950815E-9
gdc.oaire.publicfunded false
gdc.openalex.fwci 1.06031512
gdc.openalex.normalizedpercentile 0.69
gdc.opencitations.count 0
gdc.plumx.crossrefcites 1
gdc.plumx.newscount 1
gdc.publishedmonth Kasım
gdc.virtual.author Kırbız, Serap
gdc.wos.citedcount 1
gdc.wos.publishedmonth Kasim
gdc.yokperiod YÖK - 2024-25
relation.isAuthorOfPublication 552e4b0c-955f-4b93-925b-08cb2e6c5cc0
relation.isAuthorOfPublication.latestForDiscovery 552e4b0c-955f-4b93-925b-08cb2e6c5cc0
relation.isOrgUnitOfPublication de19334f-6a5b-4f7b-9410-9433c48d1e5a
relation.isOrgUnitOfPublication 0d54cd31-4133-46d5-b5cc-280b2c077ac3
relation.isOrgUnitOfPublication a6e60d5c-b0c7-474a-b49b-284dc710c078
relation.isOrgUnitOfPublication.latestForDiscovery de19334f-6a5b-4f7b-9410-9433c48d1e5a

Files