Transaction Volume Estimation in Financial Markets With Lstm

dc.contributor.author Bozkan, Tunahan
dc.contributor.author Çakar, Tuna
dc.contributor.author Ertuğrul, Seyit
dc.contributor.author Sayar, Alperen
dc.contributor.author Akçay, Ahmet
dc.date.accessioned 2023-10-18T12:06:11Z
dc.date.available 2023-10-18T12:06:11Z
dc.date.issued 2023
dc.description.abstract In this study, it was aimed to determine the transaction volume that will be encountered in the future (hourly) in the factoring sector, and then to take financial and operational action early. For the study, the LSTM model, which is a kind of recurrent neural network (RNN) that can capture long and short-term dependencies, was applied by using data-driven approaches to estimate the check amounts of hourly transactions. As a result of the results, it was aimed to increase the operational efficiency in a broad scope by allowing the factoring company to determine the loan amounts to be obtained from banks in the most optimal way, and then to take early action within the scope of both the workforce and business management of the financial resource allocation management process and operational activities. MAPE score was used as a measure of error in the time series analysis model. MAPE scores were found as %5.05 for 30 days, %4.18 for 10 days, %3.47 for 5 days, %3.09 for 3 days and %1.83 for 1 day. According to the MAPE scores calculated for different days, the enterprise will be able to decide on the loan to be drawn from banks both in terms of time and amount, and the necessary action will be taken.
dc.description.sponsorship IEEE,TUBITAK BILGEM,Turkcell
dc.identifier.citation Bozkan, T., Sayar, A., Ertuğrul, S., Çakar, T., & Akçay, A. (2023, July). Transaction Volume Estimation in Financial Markets with LSTM. In 2023 31st Signal Processing and Communications Applications Conference (SIU) (pp. 1-4). IEEE.
dc.identifier.doi 10.1109/SIU59756.2023.10223959
dc.identifier.isbn 9798350343557
dc.identifier.issn 2165-0608
dc.identifier.uri https://doi.org/10.1109/SIU59756.2023.10223959
dc.identifier.uri https://hdl.handle.net/20.500.11779/1956
dc.language.iso tr
dc.publisher IEEE
dc.relation.ispartof 2023 31st Signal Processing and Communications Applications Conference (SIU)
dc.rights info:eu-repo/semantics/closedAccess
dc.subject Time series
dc.subject Deep learning
dc.subject Transaction volume
dc.title Transaction Volume Estimation in Financial Markets With Lstm
dc.type Conference Object
dspace.entity.type Publication
gdc.author.institutional Çakar, Tuna
gdc.bip.impulseclass C5
gdc.bip.influenceclass C5
gdc.bip.popularityclass C5
gdc.coar.access metadata only access
gdc.coar.type text::conference output
gdc.description.department Mühendislik Fakültesi, Bilgisayar Mühendisliği Bölümü
gdc.description.endpage 4
gdc.description.publicationcategory Konferans Öğesi - Uluslararası - Kurum Öğretim Elemanı
gdc.description.scopusquality N/A
gdc.description.startpage 1
gdc.description.woscitationindex Conference Proceedings Citation Index - Science - Conference Proceedings Citation Index - Social Science & Humanities
gdc.description.wosquality N/A
gdc.identifier.openalex W4386212543
gdc.identifier.wos WOS:001062571000185
gdc.index.type WoS
gdc.oaire.diamondjournal false
gdc.oaire.impulse 0.0
gdc.oaire.influence 2.5942106E-9
gdc.oaire.isgreen false
gdc.oaire.popularity 2.5427536E-9
gdc.oaire.publicfunded false
gdc.openalex.fwci 0.0
gdc.openalex.normalizedpercentile 0.14
gdc.opencitations.count 0
gdc.plumx.mendeley 2
gdc.plumx.scopuscites 0
gdc.publishedmonth Temmuz
gdc.relation.journal 31st IEEE Conference on Signal Processing and Communications Applications (SIU) -- JUL 05-08, 2023 -- Istanbul Tech Univ, Ayazaga Campus, Istanbul, TURKEY
gdc.relation.journal 2023 31st Signal Processing and Communications Applications Conference, Siu
gdc.virtual.author Çakar, Tuna
gdc.wos.citedcount 0
gdc.wos.collaboration Uluslararası işbirliği ile yapılmayan - HAYIR
gdc.wos.documenttype Proceedings Paper
gdc.wos.indexdate 2023
gdc.wos.publishedmonth Ekim
gdc.yokperiod YÖK - 2022-23
relation.isAuthorOfPublication 10f8ce3b-94c2-40f0-9381-0725723768fe
relation.isAuthorOfPublication.latestForDiscovery 10f8ce3b-94c2-40f0-9381-0725723768fe
relation.isOrgUnitOfPublication 05ffa8cd-2a88-4676-8d3b-fc30eba0b7f3
relation.isOrgUnitOfPublication 0d54cd31-4133-46d5-b5cc-280b2c077ac3
relation.isOrgUnitOfPublication a6e60d5c-b0c7-474a-b49b-284dc710c078
relation.isOrgUnitOfPublication.latestForDiscovery 05ffa8cd-2a88-4676-8d3b-fc30eba0b7f3

Files

Original bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
Transaction_Volume_Estimation_in_Financial_Markets_with_LSTM.pdf
Size:
543.2 KB
Format:
Adobe Portable Document Format
Description:
Full Text- Article

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
0 B
Format:
Item-specific license agreed upon to submission
Description: