Modeling Consumer Creditworthiness Via Psychometric Scale and Machine Learning

dc.contributor.author Çakar, Tuna
dc.contributor.author Ertugrul, Seyit
dc.contributor.author Sayar, Alperen
dc.contributor.author Sahin, Türkay
dc.contributor.author Bozkan, Tunahan
dc.date.accessioned 2023-03-06T06:53:17Z
dc.date.available 2023-03-06T06:53:17Z
dc.date.issued 2022
dc.description.abstract Although the predictive power of economic metrics to detect the creditworthiness of the customers is high, there is a rising interest in the integration of cognitive, psychological, behavioral, alternative, and demographic data into credit risk systems and processing the data through modern methods. The primary motivation for the rising interest is increased customer classification accuracy. In this research, customer creditworthiness was modeled through data consisting of personality, money attitudes, impulsivity, self-esteem, self-control, and material values and processed through artificial intelligence. The obtained findings have been evaluated as a reference point for the following research. © 2022 IEEE.
dc.identifier.citation Sahin, T., Cakar, T., Bozkan, T., Ertugrul, S., & Sayar, A. (2022). Modeling Consumer Creditworthiness via Psychometric Scale and Machine Learning. 2022 7th International Conference on Computer Science and Engineering (UBMK). https://doi.org/10.1109/ubmk55850.2022.9919596
dc.identifier.doi 10.1109/UBMK55850.2022.9919596
dc.identifier.isbn 9781670000000
dc.identifier.scopus 2-s2.0-85141877441
dc.identifier.uri https://doi.org/10.1109/UBMK55850.2022.9919596
dc.identifier.uri https://hdl.handle.net/20.500.11779/1912
dc.language.iso tr
dc.publisher IEEE
dc.relation.ispartof 2022 7th International Conference on Computer Science and Engineering (UBMK)
dc.rights info:eu-repo/semantics/openAccess
dc.subject Artificial learning
dc.subject Creditworthiness
dc.subject Factoring
dc.subject Alternative data sources
dc.title Modeling Consumer Creditworthiness Via Psychometric Scale and Machine Learning
dc.title.alternative Muteri Krediverilebilirligini Psikometrik Olfek ve Yapay Ogrenme ile Modellemek
dc.type Conference Object
dspace.entity.type Publication
gdc.author.id Sahin, Türkay / 0000-0002-7722-7233 - Çakar, Tuna / 0000-0001-8594-7399
gdc.author.institutional Çakar, Tuna
gdc.bip.impulseclass C5
gdc.bip.influenceclass C5
gdc.bip.popularityclass C5
gdc.coar.access open access
gdc.coar.type text::conference output
gdc.description.department Mühendislik Fakültesi, Bilgisayar Mühendisliği Bölümü
gdc.description.endpage 461
gdc.description.publicationcategory Konferans Öğesi - Ulusal - Kurum Öğretim Elemanı
gdc.description.scopusquality N/A
gdc.description.startpage 456 - 461
gdc.description.wosquality N/A
gdc.identifier.openalex W4308095620
gdc.index.type Scopus
gdc.oaire.diamondjournal false
gdc.oaire.impulse 0.0
gdc.oaire.influence 2.5942106E-9
gdc.oaire.isgreen true
gdc.oaire.keywords Alternative data sources
gdc.oaire.keywords creditworthiness
gdc.oaire.keywords factoring
gdc.oaire.keywords artificial learning
gdc.oaire.popularity 2.19756E-9
gdc.oaire.publicfunded false
gdc.openalex.fwci 0.66382252
gdc.openalex.normalizedpercentile 0.64
gdc.opencitations.count 0
gdc.plumx.mendeley 6
gdc.plumx.scopuscites 1
gdc.publishedmonth Eylül
gdc.relation.journal Proceedings - 7th International Conference on Computer Science and Engineering, Ubmk 2022
gdc.scopus.citedcount 1
gdc.virtual.author Çakar, Tuna
gdc.wos.publishedmonth Eylül
gdc.yokperiod YÖK - 2022-23
relation.isAuthorOfPublication 10f8ce3b-94c2-40f0-9381-0725723768fe
relation.isAuthorOfPublication.latestForDiscovery 10f8ce3b-94c2-40f0-9381-0725723768fe
relation.isOrgUnitOfPublication 05ffa8cd-2a88-4676-8d3b-fc30eba0b7f3
relation.isOrgUnitOfPublication 0d54cd31-4133-46d5-b5cc-280b2c077ac3
relation.isOrgUnitOfPublication a6e60d5c-b0c7-474a-b49b-284dc710c078
relation.isOrgUnitOfPublication.latestForDiscovery 05ffa8cd-2a88-4676-8d3b-fc30eba0b7f3

Files

Original bundle

Now showing 1 - 1 of 1
Loading...
Thumbnail Image
Name:
Modeling_Consumer_Creditworthiness_via_Psychometric_Scale_and_Machine_Learning.pdf
Size:
883.54 KB
Format:
Adobe Portable Document Format
Description:
Full Text - Article

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
0 B
Format:
Item-specific license agreed upon to submission
Description: