Computational Alloy Design, Synthesis, and Characterization of Wmonbvcrx Refractory High Entropy Alloy Prepared by Vacuum Arc Melting

No Thumbnail Available

Date

2024

Journal Title

Journal ISSN

Volume Title

Publisher

Elsevier Ltd

Open Access Color

Green Open Access

Yes

OpenAIRE Downloads

OpenAIRE Views

Publicly Funded

No
Impulse
Top 10%
Influence
Average
Popularity
Average

Research Projects

Journal Issue

Abstract

Prior investigations have demonstrated enhanced mechanical properties, such as hardness and wear resistance, through high-entropy alloy designs that contain refractory metals. We propose the WMoNbVCrx alloy phase space as a single-phase BCC-structured, hard, and refractory high-entropy alloy for the first time. The WMoNbVCrx alloy (x = 0, 0.25, 0.5, 0.75, and 1) system is investigated computationally through CALPHAD and DFT for the equimolar and non-equimolar compositional phase spaces and synthesized through vacuum arc melting. The DFT calculations demonstrated the excellence of specific non-equimolar compositional spaces. It was found that stoichiometries rich in W and poor in V are exceptionally hard, while those rich in V and poor in W demonstrate unprecedented toughness, as determined by the ductility descriptor (Pugh's Ratio). The computational analysis shows the significance of microstructures that contain both (W-rich and W-poor) solid solution, where a synergy between hardness and toughness is created. Our experimental synthesis using vacuum arc melting demonstrated the possibility of successfully producing these alloys with W-rich (dendritic) and W-poor (interdendritic) solid solution regions, starting from elemental powders. The introduction of chromium (Cr) resulted in enhanced microhardness and wear resistance. The peak microhardness was attained when 0.5 moles of Cr were added, reaching 7.03 ±0.24 GPa, accompanied by the least wear volume loss. The produced alloys were found to align with the computationally predicted-designed alloys in terms of the hardness and Young's modulus trends that they follow. This comprehensive investigation underscores the synergistic application of CALPHAD and DFT techniques in the tailored design of novel high-entropy alloys, explaining their synthesis, structural correspondence, and the pivotal role of Cr in enhancing the mechanical properties of these alloys. © 2024 Elsevier B.V.

Description

Keywords

Alloy design, Arc melting, Microhardness, Refractory high entropy alloy, Wear resistance

Turkish CoHE Thesis Center URL

Fields of Science

Citation

WoS Q

Q1

Scopus Q

Q1
OpenCitations Logo
OpenCitations Citation Count
N/A

Source

Journal of Alloys and Compounds

Volume

1003

Issue

Start Page

175510

End Page

PlumX Metrics
Citations

CrossRef : 1

Scopus : 10

Captures

Mendeley Readers : 21

Google Scholar Logo
Google Scholar™
OpenAlex Logo
OpenAlex FWCI
3.26655948

Sustainable Development Goals

3

GOOD HEALTH AND WELL-BEING
GOOD HEALTH AND WELL-BEING Logo

4

QUALITY EDUCATION
QUALITY EDUCATION Logo

10

REDUCED INEQUALITIES
REDUCED INEQUALITIES Logo

16

PEACE, JUSTICE AND STRONG INSTITUTIONS
PEACE, JUSTICE AND STRONG INSTITUTIONS Logo