Spine Posture Detection for Office Workers With Hybrid Machine Learning
| dc.contributor.author | Öke, Deniz | |
| dc.contributor.author | Çakar, Tuna | |
| dc.contributor.author | Yıldız, Ahmet | |
| dc.contributor.author | Mise, Pelin | |
| dc.contributor.author | Terzibaşıoğlu, Aynur Metin | |
| dc.date.accessioned | 2023-12-13T09:10:19Z | |
| dc.date.available | 2023-12-13T09:10:19Z | |
| dc.date.issued | 2023 | |
| dc.description.abstract | This study aims to detect bad spine posture using an al-ternative approach that doesn't rely on deep learning or excessive energy. The goal is to improve accuracy and effectiveness without disrupting workflow. A custom dataset was created, numerical inferences were made from posture values, and a hybrid approach using Light Gradient Boosting achieved a 96 % success rate. | |
| dc.identifier.citation | Yildiz, A., Mise, P., Cakar, T., Terzibasioglu, A. M., & Oke, D. (2023, September). Spine posture detection for office workers with hybrid machine learning. In 2023 8th International Conference on Computer Science and Engineering (UBMK). (pp. 486-491). | |
| dc.identifier.doi | 10.1109/UBMK59864.2023.10286584 | |
| dc.identifier.isbn | 9798350340815 | |
| dc.identifier.scopus | 2-s2.0-85177551231 | |
| dc.identifier.uri | https://doi.org/10.1109/UBMK59864.2023.10286584 | |
| dc.identifier.uri | https://hdl.handle.net/20.500.11779/2146 | |
| dc.language.iso | en | |
| dc.publisher | IEEE | |
| dc.relation.ispartof | 2023 8th International Conference on Computer Science and Engineering (UBMK) | |
| dc.rights | info:eu-repo/semantics/closedAccess | |
| dc.subject | Office workers | |
| dc.subject | Sitting posture | |
| dc.subject | Machine learning | |
| dc.subject | Spine posture | |
| dc.subject | Light gradient boosting machine | |
| dc.title | Spine Posture Detection for Office Workers With Hybrid Machine Learning | |
| dc.type | Conference Object | |
| dspace.entity.type | Publication | |
| gdc.author.id | Tuna Çakar / 0000-0001-8594-7399 | |
| gdc.author.institutional | Çakar, Tuna | |
| gdc.bip.impulseclass | C5 | |
| gdc.bip.influenceclass | C5 | |
| gdc.bip.popularityclass | C5 | |
| gdc.coar.access | metadata only access | |
| gdc.coar.type | text::conference output | |
| gdc.description.department | Mühendislik Fakültesi, Bilgisayar Mühendisliği Bölümü | |
| gdc.description.endpage | 491 | |
| gdc.description.publicationcategory | Konferans Öğesi - Uluslararası - Kurum Öğretim Elemanı | |
| gdc.description.scopusquality | N/A | |
| gdc.description.startpage | 486 | |
| gdc.description.wosquality | N/A | |
| gdc.identifier.openalex | W4387913091 | |
| gdc.index.type | Scopus | |
| gdc.oaire.diamondjournal | false | |
| gdc.oaire.impulse | 0.0 | |
| gdc.oaire.influence | 2.5942106E-9 | |
| gdc.oaire.isgreen | false | |
| gdc.oaire.popularity | 2.5427536E-9 | |
| gdc.oaire.publicfunded | false | |
| gdc.openalex.collaboration | National | |
| gdc.openalex.fwci | 0.0 | |
| gdc.openalex.normalizedpercentile | 0.2 | |
| gdc.opencitations.count | 0 | |
| gdc.plumx.mendeley | 1 | |
| gdc.plumx.scopuscites | 0 | |
| gdc.publishedmonth | Eylül | |
| gdc.relation.journal | 8th International Conference on Computer Science and Engineering - UBMK 2023 | |
| gdc.scopus.citedcount | 0 | |
| gdc.virtual.author | Çakar, Tuna | |
| gdc.wos.publishedmonth | Eylül | |
| gdc.yokperiod | YÖK - 2023-24 | |
| relation.isAuthorOfPublication | 10f8ce3b-94c2-40f0-9381-0725723768fe | |
| relation.isAuthorOfPublication.latestForDiscovery | 10f8ce3b-94c2-40f0-9381-0725723768fe | |
| relation.isOrgUnitOfPublication | 05ffa8cd-2a88-4676-8d3b-fc30eba0b7f3 | |
| relation.isOrgUnitOfPublication | 0d54cd31-4133-46d5-b5cc-280b2c077ac3 | |
| relation.isOrgUnitOfPublication | a6e60d5c-b0c7-474a-b49b-284dc710c078 | |
| relation.isOrgUnitOfPublication.latestForDiscovery | 05ffa8cd-2a88-4676-8d3b-fc30eba0b7f3 |
Files
Original bundle
1 - 1 of 1
No Thumbnail Available
- Name:
- 232131232132.pdf
- Size:
- 468.75 KB
- Format:
- Adobe Portable Document Format
- Description:
- Proceedings Paper
License bundle
1 - 1 of 1
No Thumbnail Available
- Name:
- license.txt
- Size:
- 1.44 KB
- Format:
- Item-specific license agreed upon to submission
- Description:
