Grafraud: Fraud Detection Using Graph Databases and Neural Networks

dc.contributor.author Raina, Ajeet Singh
dc.contributor.author Çakar, Tuna
dc.contributor.author Ertuğrul, Seyit
dc.contributor.author Arslan, Şuayip
dc.contributor.author Sayar, Alperen
dc.date.accessioned 2024-01-25T08:13:24Z
dc.date.available 2024-01-25T08:13:24Z
dc.date.issued 2023
dc.description Index tarihi :19 Ocak 2024
dc.description.abstract The issue of fraud has become a significant concern for many companies, particularly in the finance sector, but the traditional methods of detecting fraud are no longer adequate. Innovative technologies are necessary to identify complex fraudulent activities, and RedisGraph, a high-performance graph database, may offer a solution. With the assistance of neural networks, RedisGraph can accurately and efficiently detect fraudulent transactions in vast and intricate environments. Companies typically use a combination of Python and Oracle Databases to design fraud detection systems. which provide robust data management and real time AI processing capabilities. These technologies allow to create fraud detection systems that can determine fraudulent activities in real-time. But according to advancements of fraud methods only using of these systems not efficient nowadays. This article presents a proof of concept based on an essential use case of RedisGraph-powered neural networks in detecting financial fraud. It demonstrates the value of carefully employing Python and Oracle Database to construct and deploy real-time systems that can efficiently detect fraudulent activities.
dc.identifier.citation Sayar, A., Arslan, S., Raina, A. S., Ertugrul, S., & Cakar, T. (2023). GRAFRAUD: Fraud detection using graph databases and neural networks. In 2023 4th International Informatics and Software Engineering Conference. IEEE. pp. 1-4.
dc.identifier.doi 10.1109/IISEC59749.2023.10391038
dc.identifier.isbn 9798350318036
dc.identifier.scopus 2-s2.0-85184668054
dc.identifier.uri https://hdl.handle.net/20.500.11779/2218
dc.identifier.uri https://doi.org/10.1109/IISEC59749.2023.10391038
dc.language.iso en
dc.publisher IEEE
dc.relation.ispartof 2023 4th International Informatics and Software Engineering Conference (IISEC)
dc.rights info:eu-repo/semantics/closedAccess
dc.subject Redisgraph
dc.subject Complex data structures
dc.subject Financial transactions
dc.subject Decision making
dc.subject Machine learning
dc.subject Highperformance
dc.subject Fraud detection
dc.subject Real-time
dc.subject Anomalies
dc.subject Large-scale environments
dc.subject Neural networks
dc.title Grafraud: Fraud Detection Using Graph Databases and Neural Networks
dc.type Conference Object
dspace.entity.type Publication
gdc.author.id Tuna Çakar / 0000-0001-8594-7399
gdc.author.institutional Çakar, Tuna
gdc.bip.impulseclass C5
gdc.bip.influenceclass C5
gdc.bip.popularityclass C5
gdc.coar.access metadata only access
gdc.coar.type text::conference output
gdc.description.department Mühendislik Fakültesi, Bilgisayar Mühendisliği Bölümü
gdc.description.endpage 4
gdc.description.publicationcategory Konferans Öğesi - Ulusal - Kurum Öğretim Elemanı
gdc.description.scopusquality N/A
gdc.description.startpage 1
gdc.description.wosquality N/A
gdc.identifier.openalex W4391021589
gdc.index.type Scopus
gdc.oaire.diamondjournal false
gdc.oaire.impulse 2.0
gdc.oaire.influence 2.806602E-9
gdc.oaire.isgreen false
gdc.oaire.popularity 2.5495683E-9
gdc.oaire.publicfunded false
gdc.openalex.collaboration International
gdc.openalex.fwci 1.23697525
gdc.openalex.normalizedpercentile 0.82
gdc.opencitations.count 0
gdc.plumx.mendeley 15
gdc.plumx.scopuscites 3
gdc.publishedmonth Kasım
gdc.relation.journal 2023 4th International Informatics and Software Engineering Conference
gdc.scopus.citedcount 3
gdc.virtual.author Çakar, Tuna
gdc.wos.publishedmonth Kasım
gdc.yokperiod YÖK - 2023-24
relation.isAuthorOfPublication 10f8ce3b-94c2-40f0-9381-0725723768fe
relation.isAuthorOfPublication.latestForDiscovery 10f8ce3b-94c2-40f0-9381-0725723768fe
relation.isOrgUnitOfPublication 05ffa8cd-2a88-4676-8d3b-fc30eba0b7f3
relation.isOrgUnitOfPublication 0d54cd31-4133-46d5-b5cc-280b2c077ac3
relation.isOrgUnitOfPublication a6e60d5c-b0c7-474a-b49b-284dc710c078
relation.isOrgUnitOfPublication.latestForDiscovery 05ffa8cd-2a88-4676-8d3b-fc30eba0b7f3

Files

Original bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
Neural_Networks.pdf
Size:
3.64 MB
Format:
Adobe Portable Document Format
Description:
Proceedings Paper

License bundle

Now showing 1 - 1 of 1
No Thumbnail Available
Name:
license.txt
Size:
1.44 KB
Format:
Item-specific license agreed upon to submission
Description: