Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.11779/1135
Full metadata record
DC FieldValueLanguage
dc.contributor.authorArslan, Şuayb Şefik-
dc.contributor.authorAshraf, Reza A.-
dc.contributor.authorPusane, Ali E.-
dc.date.accessioned2019-09-16T09:37:41Z
dc.date.available2019-09-16T09:37:41Z
dc.date.issued2019-
dc.identifier.citationAshrafi, R. A., Pusane, A. E., Arslan, S. S., (April 01, 2019). 2019 27th Signal Processing and Communications Applications Conference (SIU). Kernel Density Estimation for Optimal Detection in All-Bit-Line MLC Flash Memories. (Sivas; Turkey) 1-4.en_US
dc.identifier.issn2165-0608-
dc.identifier.urihttps://hdl.handle.net/20.500.11779/1135-
dc.description.abstractNAND flash memories have recently become the main component of large-scale non-volatile storage systems. Recent studies have shown that various error sources degrade the Multi-level cell (MLC) memory performance, including intercell interference, retention error, and random telegraph noise. Accurate integration of these error sources into the analytical model to optimally derive the governing probability distributions and consequently the detection thresholds to minimize error rates lie at the heart of MLC research. Utilizing static derivations will not address the detection problem, as aforementioned error sources exhibit a strong non-stationary behavior. In this paper, a novel low-complexity implementation of a non-parametric learning mechanism, kernel density estimation, shall be used to periodically estimate the underlying probability distributions and hence approximate the optimal detection performance for time-varying all-bit-line MLC flash channel.en_US
dc.language.isoenen_US
dc.publisherIEEEen_US
dc.relation.ispartof27th Signal Processing and Communications Applications Conference, SIU 2019en_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectChannel modelen_US
dc.subjectKernel density estimationen_US
dc.subjectFlash memoryen_US
dc.titleKernel Density Estimation for Optimal Detection in All-Bit Mlc Flash Memoriesen_US
dc.title.alternativeTüm-Bit-Hatlı MLC belleklerde en iyi tespit için çekirdek yoğunluk kestirimien_US
dc.typeConference Objecten_US
dc.identifier.doi10.1109/SIU.2019.8806517-
dc.identifier.scopus2-s2.0-85071975046en_US
dc.authoridŞuayb Şefik Arslan / 0000-0003-3779-0731-
dc.authoridŞuayb Şefik Arslan / K-2883-2015-
dc.description.woscitationindexConference Proceedings Citation Index - Science-
dc.description.WoSDocumentTypeProceedings Paper
dc.description.WoSPublishedMonthNisanen_US
dc.description.WoSIndexDate2019en_US
dc.description.WoSYOKperiodYÖK - 2018-19en_US
dc.relation.publicationcategoryKonferans Öğesi - Uluslararası - Kurum Öğretim Elemanıen_US
dc.identifier.endpage4en_US
dc.identifier.startpage1en_US
dc.departmentMühendislik Fakültesi, Bilgisayar Mühendisliği Bölümüen_US
dc.identifier.wosWOS:000518994300172en_US
dc.institutionauthorArslan, Şuayb Şefik-
item.cerifentitytypePublications-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.openairetypeConference Object-
item.languageiso639-1en-
item.grantfulltextembargo_20300916-
item.fulltextWith Fulltext-
crisitem.author.dept02.02. Department of Computer Engineering-
Appears in Collections:Bilgisayar Mühendisliği Bölümü Koleksiyonu
Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection
Files in This Item:
File Description SizeFormat 
Kernel-density.pdf
  Until 2030-09-16
Konferans Dosyası743.8 kBAdobe PDFView/Open    Request a copy
Show simple item record



CORE Recommender

Page view(s)

10
checked on Nov 18, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.