Please use this identifier to cite or link to this item:
https://hdl.handle.net/20.500.11779/1135
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Arslan, Şuayb Şefik | - |
dc.contributor.author | Ashraf, Reza A. | - |
dc.contributor.author | Pusane, Ali E. | - |
dc.date.accessioned | 2019-09-16T09:37:41Z | |
dc.date.available | 2019-09-16T09:37:41Z | |
dc.date.issued | 2019 | - |
dc.identifier.citation | Ashrafi, R. A., Pusane, A. E., Arslan, S. S., (April 01, 2019). 2019 27th Signal Processing and Communications Applications Conference (SIU). Kernel Density Estimation for Optimal Detection in All-Bit-Line MLC Flash Memories. (Sivas; Turkey) 1-4. | en_US |
dc.identifier.issn | 2165-0608 | - |
dc.identifier.uri | https://hdl.handle.net/20.500.11779/1135 | - |
dc.description.abstract | NAND flash memories have recently become the main component of large-scale non-volatile storage systems. Recent studies have shown that various error sources degrade the Multi-level cell (MLC) memory performance, including intercell interference, retention error, and random telegraph noise. Accurate integration of these error sources into the analytical model to optimally derive the governing probability distributions and consequently the detection thresholds to minimize error rates lie at the heart of MLC research. Utilizing static derivations will not address the detection problem, as aforementioned error sources exhibit a strong non-stationary behavior. In this paper, a novel low-complexity implementation of a non-parametric learning mechanism, kernel density estimation, shall be used to periodically estimate the underlying probability distributions and hence approximate the optimal detection performance for time-varying all-bit-line MLC flash channel. | en_US |
dc.language.iso | en | en_US |
dc.publisher | IEEE | en_US |
dc.relation.ispartof | 27th Signal Processing and Communications Applications Conference, SIU 2019 | en_US |
dc.rights | info:eu-repo/semantics/closedAccess | en_US |
dc.subject | Channel model | en_US |
dc.subject | Kernel density estimation | en_US |
dc.subject | Flash memory | en_US |
dc.title | Kernel Density Estimation for Optimal Detection in All-Bit Mlc Flash Memories | en_US |
dc.title.alternative | Tüm-Bit-Hatlı MLC belleklerde en iyi tespit için çekirdek yoğunluk kestirimi | en_US |
dc.type | Conference Object | en_US |
dc.identifier.doi | 10.1109/SIU.2019.8806517 | - |
dc.identifier.scopus | 2-s2.0-85071975046 | en_US |
dc.authorid | Şuayb Şefik Arslan / 0000-0003-3779-0731 | - |
dc.authorid | Şuayb Şefik Arslan / K-2883-2015 | - |
dc.description.woscitationindex | Conference Proceedings Citation Index - Science | - |
dc.description.WoSDocumentType | Proceedings Paper | |
dc.description.WoSPublishedMonth | Nisan | en_US |
dc.description.WoSIndexDate | 2019 | en_US |
dc.description.WoSYOKperiod | YÖK - 2018-19 | en_US |
dc.relation.publicationcategory | Konferans Öğesi - Uluslararası - Kurum Öğretim Elemanı | en_US |
dc.identifier.endpage | 4 | en_US |
dc.identifier.startpage | 1 | en_US |
dc.department | Mühendislik Fakültesi, Bilgisayar Mühendisliği Bölümü | en_US |
dc.identifier.wos | WOS:000518994300172 | en_US |
dc.institutionauthor | Arslan, Şuayb Şefik | - |
item.cerifentitytype | Publications | - |
item.openairecristype | http://purl.org/coar/resource_type/c_18cf | - |
item.openairetype | Conference Object | - |
item.languageiso639-1 | en | - |
item.grantfulltext | embargo_20300916 | - |
item.fulltext | With Fulltext | - |
crisitem.author.dept | 02.02. Department of Computer Engineering | - |
Appears in Collections: | Bilgisayar Mühendisliği Bölümü Koleksiyonu Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
Kernel-density.pdf Until 2030-09-16 | Konferans Dosyası | 743.8 kB | Adobe PDF | View/Open Request a copy |
CORE Recommender
Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.