Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.11779/1135
Title: Kernel Density Estimation for Optimal Detection in All-Bit Mlc Flash Memories
Other Titles: Tüm-Bit-Hatlı MLC belleklerde en iyi tespit için çekirdek yoğunluk kestirimi
Authors: Arslan, Şuayb Şefik
Ashraf, Reza A.
Pusane, Ali E.
Keywords: Channel model
Kernel density estimation
Flash memory
Publisher: IEEE
Source: Ashrafi, R. A., Pusane, A. E., Arslan, S. S., (April 01, 2019). 2019 27th Signal Processing and Communications Applications Conference (SIU). Kernel Density Estimation for Optimal Detection in All-Bit-Line MLC Flash Memories. (Sivas; Turkey) 1-4.
Abstract: NAND flash memories have recently become the main component of large-scale non-volatile storage systems. Recent studies have shown that various error sources degrade the Multi-level cell (MLC) memory performance, including intercell interference, retention error, and random telegraph noise. Accurate integration of these error sources into the analytical model to optimally derive the governing probability distributions and consequently the detection thresholds to minimize error rates lie at the heart of MLC research. Utilizing static derivations will not address the detection problem, as aforementioned error sources exhibit a strong non-stationary behavior. In this paper, a novel low-complexity implementation of a non-parametric learning mechanism, kernel density estimation, shall be used to periodically estimate the underlying probability distributions and hence approximate the optimal detection performance for time-varying all-bit-line MLC flash channel.
URI: https://hdl.handle.net/20.500.11779/1135
ISSN: 2165-0608
Appears in Collections:Bilgisayar Mühendisliği Bölümü Koleksiyonu
Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection

Files in This Item:
File Description SizeFormat 
Kernel-density.pdf
  Until 2030-09-16
Konferans Dosyası743.8 kBAdobe PDFView/Open    Request a copy
Show full item record



CORE Recommender

Page view(s)

10
checked on Nov 25, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.