Predicting the Reasonable Departments for the Human Resources Related Questions by Using the Text Classification Algorithms
Loading...
Date
2018
Authors
Journal Title
Journal ISSN
Volume Title
Publisher
MEF Üniversitesi, Fen Bilimleri Enstitüsü
Open Access Color
OpenAIRE Downloads
OpenAIRE Views
Abstract
The employees of Yapı Kredi Bank use a help desk system to ask their Human Resources related questions to the employees of the Human Resources departments. The questions are assigned automatically to the relevant departments by the system according to the subjects of the questions. In some cases, the mismatches between the contents and the subjects of the questions may cause the wrong Human Resources department assignments of the questions. Even though the application allows Human Resources employees to redirect the questions to the appropriate Human Resources departments, which are responsible for answering, the response time of these questions lasts longer. This project aims to analyze the content of the Human Resources related questions by using the text classification algorithms to predict the responsible Human Resources departments. Thus, it is aimed to respond to the questions in a much shorter time.
Yapı ve Kredi Bankası çalışanları İnsan Kaynakları ile ilgili sorularını bir talep yönetimi sistemi kullanarak İnsan Kaynakları çalışanlarına iletmektedir. Soruların hangi İnsan Kaynakları ekibine sistem tarafından yönlendirileceği; çalışanın sorusunu sorarken seçeceği konu başlığına göre belirlenmektedir. Bazı durumlarda; seçilen konu başlığıyla sorunun içeriği birbiriyle örtüşmediği için uygulama bir takım soruları yanlış İnsan Kaynakları ekiplerine yönlendirmektedir. Her ne kadar; İnsan Kaynakları çalışanları kendilerinin onayına düşen bu soruları yanıtlamakla sorumlu olan diğer İnsan Kaynakları ekiplerine yönlendirebiliyor olsalar da; bu durum soruların çözüm sürelerinin uzamasına sebep olmaktadır. Bu çalışma; metin sınıflandırma teknikleri kullanarak İnsan Kaynakları ile ilgili soruların metin içeriklerinin analiz edilmesini ve sorulara cevap vermekle sorumlu İnsan Kaynakları departmanlarının tahminlenmesini kapsamaktadır. Bu sayede, banka çalışanlarının İnsan Kaynakları’na ilettiği sorulara çok daha kısa süre içerisinde yanıt verilmesi hedeflenmektedir.
Yapı ve Kredi Bankası çalışanları İnsan Kaynakları ile ilgili sorularını bir talep yönetimi sistemi kullanarak İnsan Kaynakları çalışanlarına iletmektedir. Soruların hangi İnsan Kaynakları ekibine sistem tarafından yönlendirileceği; çalışanın sorusunu sorarken seçeceği konu başlığına göre belirlenmektedir. Bazı durumlarda; seçilen konu başlığıyla sorunun içeriği birbiriyle örtüşmediği için uygulama bir takım soruları yanlış İnsan Kaynakları ekiplerine yönlendirmektedir. Her ne kadar; İnsan Kaynakları çalışanları kendilerinin onayına düşen bu soruları yanıtlamakla sorumlu olan diğer İnsan Kaynakları ekiplerine yönlendirebiliyor olsalar da; bu durum soruların çözüm sürelerinin uzamasına sebep olmaktadır. Bu çalışma; metin sınıflandırma teknikleri kullanarak İnsan Kaynakları ile ilgili soruların metin içeriklerinin analiz edilmesini ve sorulara cevap vermekle sorumlu İnsan Kaynakları departmanlarının tahminlenmesini kapsamaktadır. Bu sayede, banka çalışanlarının İnsan Kaynakları’na ilettiği sorulara çok daha kısa süre içerisinde yanıt verilmesi hedeflenmektedir.
Description
Keywords
Text Classification, Human Resources, Predicting, Metin Sınıflandırma, İnsan Kaynakları, Tahminleme
Turkish CoHE Thesis Center URL
Fields of Science
Citation
Sancı, Y. (2018). Predicting the reasonable departments for the human resources related questions by using the text classification algorithms, MEF Üniversitesi Fen Bilimleri Enstitüsü, İstanbul, Türkiye