Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.11779/1197
Title: Benchmarking of Recommendation Models for an On-Line Fast Fashion Retailer
Other Titles: Bir online hazır giyim moda perakemdecisinde öneri sistemlerinin karşılaştırılması
Authors: Tilkat, Mustafa
Advisors: Küçükaydın, Hande
Keywords: Online Fashion Retailer
Recommendation Engine
User Based Collaborative Filtering
Item Based Collaborative Filtering
Collaborative Filtering
İşbirlikçi Filtreleme
Collaborative Filtering
Online Moda Perakendesi
Öneri Sistemleri
Publisher: MEF Üniversitesi, Fen Bilimleri Enstitüsü
Source: Tilkat, M. (2018). benchmarking of recommendation models for an on-line fast fashion retailer, MEF Üniversitesi Fen Bilimleri Enstitüsü, İstanbul, Türkiye
Abstract: This project studies the usage of the recommendation engines to improve the sales in an online fashion retailer. Fashion retailers sale variety of products throughout their online channels. Since the number of products can be huge compared to an in-line shop, customers may miss some of them while shopping online. Hence, it is crucial to display products that are more likely to be purchased by a customer when the customer is surfing on the website. Our problem is motivated by practice at an online fashion retailer in Turkey. Four collaborative filtering-based algorithms and a random recommender are utilized to design a recommendation engine. 80% of the data is used for training while the other 20% is to used test the designed method. Based on our experiments, User Based Collaborative Filtering (UBCF) using Pearson correlation outperform the other algorithms based on Receiver Operating Characteristic (ROC) curve.
Bu projede, bir online moda perakendecisinde satışları iyileştirmek için öneri sistemlerinin nasıl uygulanacağı anlatılmıştır. Moda perakendecilerinin online kanallarında ürün çeşitliliği oldukça fazla olabilmektedir. Ürünlerin sayısı normal bir mağazayla karşılaştırıldığında çok büyük olabileceğinden, müşteriler online alışveriş yaparken bazı modelleri gözden kaçırabilmekte veya aradıkları ürünleri kolayca bulamayabilmektedirler. Bu nedenle, müşteri bir web sitesinde gezinirken bir müşteri tarafından satın alınma olasılığı daha yüksek olan ürünleri müşteriye sunabilme kabiliyeti oldukça önemlidir. Problemimiz, Türkiye'de bir online moda perakendecisi dataları üzerinde uygulama yaparak tatmin edici sonuçlar bulmak üzerine motive edilmiştir. Bir öneri motoru tasarlamak için dört farklı işbirlikçi filtreleme (Collaborative filtering) tabanlı algoritma ve rastgele çeşitli öneriler sunabilecek arı bir baz model kullanılmaktadır. Verilerin% 80'i eğitim seti,% 20'si ise tasarlanan yöntemi test etmek için kullanılmıştır. Deneylerimize dayanarak, Pearson korelasyonunu kullanan Kullanıcı Tabanlı İşbirlikli Filtreleme (User Based Collaborative Filtering) modelinin, ROC eğrisine bakıldığında diğer algoritmalara göre daha iyi bir performans ortaya koyduğu gözlemlenmiştir.
URI: https://hdl.handle.net/20.500.11779/1197
Appears in Collections:FBE, Yüksek Lisans, Proje Koleksiyonu

Files in This Item:
File Description SizeFormat 
MustafaTilkat.pdfYL-Proje Dosyası1.13 MBAdobe PDFThumbnail
View/Open
Show full item record



CORE Recommender

Page view(s)

24
checked on Nov 4, 2024

Google ScholarTM

Check





Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.