Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.11779/1587
Full metadata record
DC FieldValueLanguage
dc.contributor.authorPasinlioğlu, Şenay-
dc.contributor.authorDelale, Can Fuad-
dc.date.accessioned2021-11-25T09:39:28Z
dc.date.available2021-11-25T09:39:28Z
dc.date.issued2021-
dc.identifier.citationDelale, C. F., & Pasinlioğlu, Ş. (04 October 2021 ). Acoustic cavitation model based on a novel reduced order gas pressure law. AIP Advances, 11(11), pp. 1-24. https://doi.org/10.1063/5.0068152en_US
dc.identifier.issn2158-3226-
dc.identifier.urihttps://hdl.handle.net/20.500.11779/1587-
dc.identifier.urihttps://doi.org/10.1063/5.0068152-
dc.description.abstractThe thermal behavior of a spherical gas bubble in a liquid excited by an acoustic pressure signal is investigated by constructing an iterative solution of the energy balance equations between the gas bubble and the surrounding liquid in the uniform pressure approximation. This iterative solution leads to hierarchy equations for the radial partial derivatives of the temperature at the bubble wall, which control the temporal rate of change of the gas pressure and gas temperature within the bubble. In particular, a closure relation for the hierarchy equations is introduced based on the ansatz that approximates the rapid change of state during the collapse of the bubble from almost isothermal to almost adiabatic behavior by time averaging the complex dynamics of change of state over a relatively short characteristic time. This, in turn, leads to the desired reduced order gas pressure law exhibiting power law dependence on the bubble wall temperature and on the bubble radius, with the polytropic index depending on the isentropic exponent of the gas and on a parameter that is a function of the Péclet number and a characteristic time scale. Results of the linear theory for gas bubbles are recovered by identifying this parameter as a function of the Péclet number based on the Minnaert frequency. The novel gas pressure law is then validated against the near-isothermal solution and against the results of the numerical simulations of the original energy balance equations for large amplitude oscillations using spectral methods. Consequently, an acoustic cavitation model that accounts for phase change but that neglects mass diffusion is constructed by employing the reduced order gas pressure law together with the Plesset–Zwick solution for the bubble wall temperature and the Keller–Miksis equation for spherical bubble dynamics. Results obtained using variable interface properties for acoustically driven cavitation bubbles in water show that the time variations of the bubble radius and the bubble wall temperature lie between those obtained by the isothermal and adiabatic laws depending on the value of the Péclet number and the characteristic time scale.en_US
dc.language.isoenen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectAir buublelesen_US
dc.subjectOscillationsen_US
dc.subjectThermal behavioren_US
dc.subjectVaporen_US
dc.subjectBubble dynamicsen_US
dc.titleAcoustic Cavitation Model Based on a Novel Reduced Order Gas Pressure Lawen_US
dc.typeArticleen_US
dc.identifier.doi10.1063/5.0068152-
dc.identifier.scopus2-s2.0-85118769383en_US
dc.authoridCan Fuat Delale / 0000-0002-4577-9201-
dc.description.PublishedMonthKasımen_US
dc.description.woscitationindexScience Citation Index Expanded-
dc.identifier.wosqualityQ4-
dc.description.WoSDocumentTypeArticle
dc.description.WoSInternationalCollaborationUluslararası işbirliği ile yapılmayan - HAYIRen_US
dc.description.WoSPublishedMonthNovemberen_US
dc.description.WoSIndexDate2021en_US
dc.description.WoSYOKperiodYÖK - 2021-22en_US
dc.identifier.scopusqualityQ2-
dc.relation.publicationcategoryMakale - Uluslararası Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.identifier.startpage1-24en_US
dc.identifier.issue11en_US
dc.identifier.volume11en_US
dc.departmentMühendislik Fakültesi, Makine Mühendisliği Bölümüen_US
dc.relation.journalAIP Advancesen_US
dc.identifier.wosWOS:000716755400013en_US
dc.institutionauthorDelale, Can Fuad-
item.grantfulltextopen-
item.fulltextWith Fulltext-
item.languageiso639-1en-
item.openairetypeArticle-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.cerifentitytypePublications-
crisitem.author.dept02.03. Department of Mechanical Engineering-
Appears in Collections:Makine Mühendisliği Bölümü Koleksiyonu
Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
WoS İndeksli Yayınlar Koleksiyonu / WoS Indexed Publications Collection
Files in This Item:
File Description SizeFormat 
Delale-2021-Acoustic-cavitation-model-based-on-.pdfFull Text - Article7.8 MBAdobe PDFThumbnail
View/Open
Show simple item record



CORE Recommender

SCOPUSTM   
Citations

1
checked on Nov 23, 2024

WEB OF SCIENCETM
Citations

1
checked on Nov 23, 2024

Page view(s)

58
checked on Nov 18, 2024

Download(s)

12
checked on Nov 18, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.