Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.11779/1689
Full metadata record
DC FieldValueLanguage
dc.contributor.advisorTuna Çakar-
dc.contributor.authorKara, Serdar Ufuk-
dc.date.accessioned2021-12-14T11:21:13Z
dc.date.available2021-12-14T11:21:13Z
dc.date.issued2020-
dc.identifier.citationKara, S. U. (2021). Turkish Private Pension Fund Size Forecasting As An Application of Data Analytics. MEF Üniversitesi Fen Bilimleri Enstitüsü, Bilişim Teknolojileri Yüksek Lisans Programı. ss. 1-36en_US
dc.identifier.urihttps://hdl.handle.net/20.500.11779/1689-
dc.description.abstractIn this study univariate and multivariate models are used to forecast the net changes in total pension fund size of a private pension company in Turkey, using the daily data between November 2003 and November 2020. Univariate models include the naïve, autoregressive (AR), moving average (MA), and autoregressive moving average (ARMA) models. Multivariate models include vector autoregression (VAR) and multiple linear regression models. Our findings suggest that multivariate model predictions outperform univariate model predictions. Univariate model predictions can be improved with walk forward approach. Increased lag size can help improve AR, MA, ARMA and VAR model predictions. Naïve model produces the weakest predictions.en_US
dc.language.isoenen_US
dc.publisherMEF Üniversitesi Fen Bilimleri Enstitüsüen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectPension Fund Size Change, Univariate Model, Multivariate Model, Autoregressive Moving Average Model, Vector Autoregression Modelen_US
dc.titleTurkish Private Pension Fund Size Forecasting as an Application of Data Analyticsen_US
dc.title.alternativeBir veri analitiği uygulaması olarak Türk bireysel emeklilik fon büyüklükleri tahminien_US
dc.typeMaster's Degree Projecten_US
dc.relation.publicationcategoryYL-Bitirme Projesien_US
dc.identifier.startpage1-36en_US
dc.departmentBilişim Teknolojileri Yüksek Lisans Programıen_US
dc.institutionauthorKara, Serdar Ufuk-
item.grantfulltextopen-
item.fulltextWith Fulltext-
item.languageiso639-1en-
item.openairetypeMaster's Degree Project-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.cerifentitytypePublications-
Appears in Collections:FBE, Yüksek Lisans, Proje Koleksiyonu
Files in This Item:
File Description SizeFormat 
FBE_BilişimTeknolojileri_SerdarUfukKara.pdfYL-Proje Dosyası1.28 MBAdobe PDFThumbnail
View/Open
Show simple item record



CORE Recommender

Page view(s)

42
checked on Nov 18, 2024

Download(s)

4
checked on Nov 18, 2024

Google ScholarTM

Check





Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.