Please use this identifier to cite or link to this item:
https://hdl.handle.net/20.500.11779/1915
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Sayar, Alperen | - |
dc.contributor.author | Arslan Suayb S. | - |
dc.contributor.author | Çakar Tuna | - |
dc.date.accessioned | 2023-03-06T06:53:18Z | |
dc.date.available | 2023-03-06T06:53:18Z | |
dc.date.issued | 2022 | - |
dc.identifier.citation | Sayar, A., Arslan, S. S., & Cakar, T. (2022). SSQEM: Semi-Supervised Quantum Error Mitigation. 2022 7th International Conference on Computer Science and Engineering (UBMK). https://doi.org/10.1109/ubmk55850.2022.9919474 | en_US |
dc.identifier.isbn | 9781670000000 | - |
dc.identifier.uri | https://doi.org/10.1109/UBMK55850.2022.9919474 | - |
dc.identifier.uri | https://hdl.handle.net/20.500.11779/1915 | - |
dc.description.abstract | One of the fundamental obstacles for quantum computation (especially in noisy intermediate-scale quantum (NISQ) era) to be a near-term reality is the manufacturing gate/measurement technologies that make the system state quite fragile due to decoherence. As the world we live in is quite far away from the ideal, complex particle-level material imperfections due to interactions with the environment are an inevitable part of the computation process. Hence keeping the accurate state of the particles involved in the computation becomes almost impossible. In this study, we posit that any physical quantum computer sys-tem manifests more multiple error source processes as the number of qubits as well as depth of the circuit increase. Accordingly, we propose a semi-supervised quantum error mitigation technique consisting of two separate stages each based on an unsupervised and a supervised machine learning model, respectively. The proposed scheme initially learns the error types/processes and then compensates the error due to data processing and the projective measurement all in the computational basis. © 2022 IEEE. | en_US |
dc.language.iso | en | en_US |
dc.publisher | IEEE | en_US |
dc.rights | info:eu-repo/semantics/openAccess | en_US |
dc.subject | Clustering | en_US |
dc.subject | Quantum error mitigation | en_US |
dc.subject | Semi-supervised learning | en_US |
dc.title | Ssqem: Semi-Supervised Quantum Error Mitigation | en_US |
dc.type | Conference Object | en_US |
dc.identifier.doi | 10.1109/UBMK55850.2022.9919474 | - |
dc.identifier.scopus | 2-s2.0-85141850406 | en_US |
dc.authorid | Şuayb S. Arslan / 0000-0003-3779-0731 | - |
dc.authorid | Tuna Çakar / 0000-0001-8594-7399 | - |
dc.relation.publicationcategory | Konferans Öğesi - Ulusal - Kurum Öğretim Elemanı | en_US |
dc.identifier.startpage | 474 - 478 | en_US |
dc.department | Mühendislik Fakültesi, Bilgisayar Mühendisligi Bölümü | en_US |
dc.relation.journal | Proceedings - 7th International Conference on Computer Science and Engineering, Ubmk 2022 | en_US |
dc.institutionauthor | Sayar, Alperen, Arslan, Suayb S., Çakar, Tuna | - |
item.grantfulltext | open | - |
item.fulltext | With Fulltext | - |
item.languageiso639-1 | en | - |
item.openairetype | Conference Object | - |
item.openairecristype | http://purl.org/coar/resource_type/c_18cf | - |
item.cerifentitytype | Publications | - |
crisitem.author.dept | 02.02. Department of Computer Engineering | - |
crisitem.author.dept | 02.02. Department of Computer Engineering | - |
Appears in Collections: | Bilgisayar Mühendisliği Bölümü Koleksiyonu Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
SSQEM_Semi-Supervised_Quantum_Error_Mitigation.pdf | Full Text - Article | 196.27 kB | Adobe PDF | View/Open |
CORE Recommender
SCOPUSTM
Citations
1
checked on Nov 16, 2024
Page view(s)
22
checked on Nov 18, 2024
Download(s)
20
checked on Nov 18, 2024
Google ScholarTM
Check
Altmetric
Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.