Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.11779/1915
Full metadata record
DC FieldValueLanguage
dc.contributor.authorSayar, Alperen-
dc.contributor.authorArslan Suayb S.-
dc.contributor.authorÇakar Tuna-
dc.date.accessioned2023-03-06T06:53:18Z
dc.date.available2023-03-06T06:53:18Z
dc.date.issued2022-
dc.identifier.citationSayar, A., Arslan, S. S., & Cakar, T. (2022). SSQEM: Semi-Supervised Quantum Error Mitigation. 2022 7th International Conference on Computer Science and Engineering (UBMK). https://doi.org/10.1109/ubmk55850.2022.9919474en_US
dc.identifier.isbn9781670000000-
dc.identifier.urihttps://doi.org/10.1109/UBMK55850.2022.9919474-
dc.identifier.urihttps://hdl.handle.net/20.500.11779/1915-
dc.description.abstractOne of the fundamental obstacles for quantum computation (especially in noisy intermediate-scale quantum (NISQ) era) to be a near-term reality is the manufacturing gate/measurement technologies that make the system state quite fragile due to decoherence. As the world we live in is quite far away from the ideal, complex particle-level material imperfections due to interactions with the environment are an inevitable part of the computation process. Hence keeping the accurate state of the particles involved in the computation becomes almost impossible. In this study, we posit that any physical quantum computer sys-tem manifests more multiple error source processes as the number of qubits as well as depth of the circuit increase. Accordingly, we propose a semi-supervised quantum error mitigation technique consisting of two separate stages each based on an unsupervised and a supervised machine learning model, respectively. The proposed scheme initially learns the error types/processes and then compensates the error due to data processing and the projective measurement all in the computational basis. © 2022 IEEE.en_US
dc.language.isoenen_US
dc.publisherIEEEen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectClusteringen_US
dc.subjectQuantum error mitigationen_US
dc.subjectSemi-supervised learningen_US
dc.titleSsqem: Semi-Supervised Quantum Error Mitigationen_US
dc.typeConference Objecten_US
dc.identifier.doi10.1109/UBMK55850.2022.9919474-
dc.identifier.scopus2-s2.0-85141850406en_US
dc.authoridŞuayb S. Arslan / 0000-0003-3779-0731-
dc.authoridTuna Çakar / 0000-0001-8594-7399-
dc.relation.publicationcategoryKonferans Öğesi - Ulusal - Kurum Öğretim Elemanıen_US
dc.identifier.startpage474 - 478en_US
dc.departmentMühendislik Fakültesi, Bilgisayar Mühendisligi Bölümüen_US
dc.relation.journalProceedings - 7th International Conference on Computer Science and Engineering, Ubmk 2022en_US
dc.institutionauthorSayar, Alperen, Arslan, Suayb S., Çakar, Tuna-
item.grantfulltextopen-
item.fulltextWith Fulltext-
item.languageiso639-1en-
item.openairetypeConference Object-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.cerifentitytypePublications-
crisitem.author.dept02.02. Department of Computer Engineering-
crisitem.author.dept02.02. Department of Computer Engineering-
Appears in Collections:Bilgisayar Mühendisliği Bölümü Koleksiyonu
Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
Files in This Item:
File Description SizeFormat 
SSQEM_Semi-Supervised_Quantum_Error_Mitigation.pdfFull Text - Article196.27 kBAdobe PDFThumbnail
View/Open
Show simple item record



CORE Recommender

SCOPUSTM   
Citations

1
checked on Nov 16, 2024

Page view(s)

22
checked on Nov 18, 2024

Download(s)

20
checked on Nov 18, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.