Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.11779/2171
Full metadata record
DC FieldValueLanguage
dc.contributor.authorSayar, Alperen-
dc.contributor.authorYıldız, Ahmet-
dc.contributor.authorÇakar, Tuna-
dc.contributor.authorŞengüloğlu, Dilara-
dc.contributor.authorErtuğrul, Seyit-
dc.date.accessioned2024-01-11T08:58:13Z-
dc.date.available2024-01-11T08:58:13Z-
dc.date.issued2023-
dc.identifier.citationSayar, A., Yıildiz, A., Cakar, T., Senguloglu, D., & Ertugrul, S. (2023). Performing DISC Personal inventory analysis in job postings using artificial intelligence methods. Data Science and Applications, 6(2), 5-12.en_US
dc.identifier.urihttps://hdl.handle.net/20.500.11779/2171-
dc.description.abstractOne of the application fields of DISC selfevaluation analysis was introduced to predict people's performance and orientation in their working life. Each letter in the word DISC represents an essential personal characteristic, dividing the profiles of people in business life into four essential parts. In the current study, DISC analysis is conducted on job postings to match the person with the job posting. The current study was based on the analysis of 3 different datasets with job postings in English, Turkish and Romanian prepared by using web scraping methods and then labeled in accordance with DISC criteria. Several different machine learning algorithms have been performed on the DISC analysis outputs, and they reached the best results with accuracy values of around over 96% on the English dataset, around over 95% on the Turkish dataset, and around over 96% on the Romanian dataset, for both D, I, S, C models.en_US
dc.language.isoenen_US
dc.publisherData science and applicationsen_US
dc.rightsinfo:eu-repo/semantics/openAccessen_US
dc.subjectLSTMen_US
dc.subjectXGBoosten_US
dc.subjectJob postings,en_US
dc.subjectSelf-evaluationen_US
dc.subjectDISCen_US
dc.titlePerforming Disc Personal Inventory Analysis in Job Postings Using Artificial Intelligence Methodsen_US
dc.typeArticleen_US
dc.authoridTuna Çakar / 0000-0001-8594-7399-
dc.description.PublishedMonthAralıken_US
dc.relation.publicationcategoryMakale - Ulusal Hakemli Dergi - Kurum Öğretim Elemanıen_US
dc.identifier.endpage12en_US
dc.identifier.startpage5en_US
dc.identifier.issue2en_US
dc.identifier.volume6en_US
dc.departmentMühendislik Fakültesi, Bilgisayar Mühendisliği Bölümüen_US
dc.institutionauthorYıldız, Ahmet-
dc.institutionauthorÇakar, Tuna-
dc.institutionauthorŞengüloğlu, Dilara-
item.grantfulltextopen-
item.fulltextWith Fulltext-
item.languageiso639-1en-
item.openairetypeArticle-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.cerifentitytypePublications-
crisitem.author.dept02.02. Department of Computer Engineering-
Appears in Collections:Bilgisayar Mühendisliği Bölümü Koleksiyonu
Files in This Item:
File Description SizeFormat 
20231231.pdfFull Text- Article1.57 MBAdobe PDFThumbnail
View/Open
Show simple item record



CORE Recommender

Page view(s)

10
checked on Nov 18, 2024

Download(s)

10
checked on Nov 18, 2024

Google ScholarTM

Check





Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.