Please use this identifier to cite or link to this item: https://hdl.handle.net/20.500.11779/2335
Full metadata record
DC FieldValueLanguage
dc.contributor.authorŞahin, Zeynep-
dc.contributor.authorÇakar, Tuna-
dc.contributor.authorDrias, Yassine-
dc.contributor.authorTağtekin, Burak-
dc.date.accessioned2024-09-08T16:52:57Z-
dc.date.available2024-09-08T16:52:57Z-
dc.date.issued2024-
dc.identifier.isbn9798350388961-
dc.identifier.urihttps://hdl.handle.net/20.500.11779/2335-
dc.identifier.urihttps://doi.org/10.1109/SIU61531.2024.10601038-
dc.descriptionBerdan Civata B.C.; et al.; Figes; Koluman; Loodos; Tarsus Universityen_US
dc.description.abstractThe present study has aimed to provide a different ranking approach that will be used actively in a sector-specific application regarding the optimization of item ranking presented to the users. The current online approach in several different applications still holds a manual ranking algorithm whose parameters are determined by the data specialists with adequate domain-knowledge. The obtained findings from the present study indicate that the optimized Bayesian Personalized Ranking models will be used for providing a suitable, data-driven input for the ranking system that would serve to be personalized. The outcomes of the present study also demonstrate that the model using LearnBPR optimized with a stochastic gradient descent algorithm outperform the other similar methods. The sample model outputs were also investigated by a user sample to ensure that the algorithm was working correctly. The next potential step is to provide a normalization process to include the extracted information to the current ranking system and observe the performance of this new algorithm with the A/B tests conducted. © 2024 IEEE.en_US
dc.language.isoenen_US
dc.publisherInstitute of Electrical and Electronics Engineers Inc.en_US
dc.relation.ispartof32nd IEEE Conference on Signal Processing and Communications Applications, SIU 2024 - Proceedings -- 32nd IEEE Conference on Signal Processing and Communications Applications, SIU 2024 -- 15 May 2024 through 18 May 2024 -- Mersin -- 201235en_US
dc.rightsinfo:eu-repo/semantics/closedAccessen_US
dc.subjectCuisine recommendationen_US
dc.subjectStochastic gradient descent optimizationen_US
dc.subjectBayesian personalized ranking (bpr)en_US
dc.subjectLearning to rank (ltr)en_US
dc.subjectSmart sortingen_US
dc.titleThe Application of Two Bayesian Personalized Ranking Approaches Based on Item Recommendation From Implicit Feedback;en_US
dc.title.alternativeÖrtük Geri Bildirime Dayalı Öğe Tavsiyesi İçin İki Bayes Kişiselleştirilmiş Sıralama Yaklaşımının Uygulanmasıen_US
dc.typeConference Objecten_US
dc.identifier.doi10.1109/SIU61531.2024.10601038-
dc.identifier.scopus2-s2.0-85200922903en_US
local.message.claim2024-10-23T16:43:06.689+0300*
local.message.claim|rp00139*
local.message.claim|submit_approve*
local.message.claim|dc_contributor_author*
local.message.claim|None*
dc.authorscopusid57224638412-
dc.authorscopusid58876518800-
dc.authorscopusid56329345400-
dc.authorscopusid56440023300-
dc.description.PublishedMonthTemmuzen_US
dc.relation.publicationcategoryKonferans Öğesi - Uluslararası - Kurum Öğretim Elemanıen_US
dc.departmentMühendislik Fakültesi, Bilgisayar Mühendisliği Bölümüen_US
dc.institutionauthorÇakar, Tuna-
dc.institutionauthorDrias, Yassine-
item.grantfulltextembargo_restricted_20400101-
item.fulltextWith Fulltext-
item.languageiso639-1en-
item.openairetypeConference Object-
item.openairecristypehttp://purl.org/coar/resource_type/c_18cf-
item.cerifentitytypePublications-
crisitem.author.dept02.02. Department of Computer Engineering-
crisitem.author.dept02.02. Department of Computer Engineering-
Appears in Collections:Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection
Files in This Item:
File SizeFormat 
Full Text - Article.pdf
  Restricted Access
344.07 kBAdobe PDFView/Open    Request a copy
Show simple item record



CORE Recommender

Page view(s)

78
checked on Nov 18, 2024

Google ScholarTM

Check




Altmetric


Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.