Please use this identifier to cite or link to this item:
https://hdl.handle.net/20.500.11779/2335
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Şahin, Zeynep | - |
dc.contributor.author | Çakar, Tuna | - |
dc.contributor.author | Drias, Yassine | - |
dc.contributor.author | Tağtekin, Burak | - |
dc.date.accessioned | 2024-09-08T16:52:57Z | - |
dc.date.available | 2024-09-08T16:52:57Z | - |
dc.date.issued | 2024 | - |
dc.identifier.isbn | 9798350388961 | - |
dc.identifier.uri | https://hdl.handle.net/20.500.11779/2335 | - |
dc.identifier.uri | https://doi.org/10.1109/SIU61531.2024.10601038 | - |
dc.description | Berdan Civata B.C.; et al.; Figes; Koluman; Loodos; Tarsus University | en_US |
dc.description.abstract | The present study has aimed to provide a different ranking approach that will be used actively in a sector-specific application regarding the optimization of item ranking presented to the users. The current online approach in several different applications still holds a manual ranking algorithm whose parameters are determined by the data specialists with adequate domain-knowledge. The obtained findings from the present study indicate that the optimized Bayesian Personalized Ranking models will be used for providing a suitable, data-driven input for the ranking system that would serve to be personalized. The outcomes of the present study also demonstrate that the model using LearnBPR optimized with a stochastic gradient descent algorithm outperform the other similar methods. The sample model outputs were also investigated by a user sample to ensure that the algorithm was working correctly. The next potential step is to provide a normalization process to include the extracted information to the current ranking system and observe the performance of this new algorithm with the A/B tests conducted. © 2024 IEEE. | en_US |
dc.language.iso | en | en_US |
dc.publisher | Institute of Electrical and Electronics Engineers Inc. | en_US |
dc.relation.ispartof | 32nd IEEE Conference on Signal Processing and Communications Applications, SIU 2024 - Proceedings -- 32nd IEEE Conference on Signal Processing and Communications Applications, SIU 2024 -- 15 May 2024 through 18 May 2024 -- Mersin -- 201235 | en_US |
dc.rights | info:eu-repo/semantics/closedAccess | en_US |
dc.subject | Cuisine recommendation | en_US |
dc.subject | Stochastic gradient descent optimization | en_US |
dc.subject | Bayesian personalized ranking (bpr) | en_US |
dc.subject | Learning to rank (ltr) | en_US |
dc.subject | Smart sorting | en_US |
dc.title | The Application of Two Bayesian Personalized Ranking Approaches Based on Item Recommendation From Implicit Feedback; | en_US |
dc.title.alternative | Örtük Geri Bildirime Dayalı Öğe Tavsiyesi İçin İki Bayes Kişiselleştirilmiş Sıralama Yaklaşımının Uygulanması | en_US |
dc.type | Conference Object | en_US |
dc.identifier.doi | 10.1109/SIU61531.2024.10601038 | - |
dc.identifier.scopus | 2-s2.0-85200922903 | en_US |
local.message.claim | 2024-10-23T16:43:06.689+0300 | * |
local.message.claim | |rp00139 | * |
local.message.claim | |submit_approve | * |
local.message.claim | |dc_contributor_author | * |
local.message.claim | |None | * |
dc.authorscopusid | 57224638412 | - |
dc.authorscopusid | 58876518800 | - |
dc.authorscopusid | 56329345400 | - |
dc.authorscopusid | 56440023300 | - |
dc.description.PublishedMonth | Temmuz | en_US |
dc.relation.publicationcategory | Konferans Öğesi - Uluslararası - Kurum Öğretim Elemanı | en_US |
dc.department | Mühendislik Fakültesi, Bilgisayar Mühendisliği Bölümü | en_US |
dc.institutionauthor | Çakar, Tuna | - |
dc.institutionauthor | Drias, Yassine | - |
item.grantfulltext | embargo_restricted_20400101 | - |
item.fulltext | With Fulltext | - |
item.languageiso639-1 | en | - |
item.openairetype | Conference Object | - |
item.openairecristype | http://purl.org/coar/resource_type/c_18cf | - |
item.cerifentitytype | Publications | - |
crisitem.author.dept | 02.02. Department of Computer Engineering | - |
crisitem.author.dept | 02.02. Department of Computer Engineering | - |
Appears in Collections: | Scopus İndeksli Yayınlar Koleksiyonu / Scopus Indexed Publications Collection |
Files in This Item:
File | Size | Format | |
---|---|---|---|
Full Text - Article.pdf Restricted Access | 344.07 kB | Adobe PDF | View/Open Request a copy |
CORE Recommender
Items in GCRIS Repository are protected by copyright, with all rights reserved, unless otherwise indicated.