Bilgisayar Mühendisliği Bölümü Koleksiyonu
Permanent URI for this collectionhttps://hdl.handle.net/20.500.11779/1940
Browse
Browsing Bilgisayar Mühendisliği Bölümü Koleksiyonu by Access Right "info:eu-repo/semantics/openAccess"
Now showing 1 - 20 of 52
- Results Per Page
- Sort Options
Article Citation - WoS: 12Citation - Scopus: 21Advancements in Distributed Ledger Technology for Internet of Things(Elsevier, 2020) Jurdak, Raja; Arslan, Şuayb Şefik; Krishnamachari, Bhaskar; Jelitto, JensInternet of Things (IoT) is paving the way for different kinds of devices to be connected and properly communicated at a mass scale. However, conventional mechanisms used to sustain security and privacy cannot be directly applied to IoT whose topology is increasingly becoming decentralized. Distributed Ledger Technologies (DLT) on the other hand comprise varying forms of decentralized data structures that provide immutability through cryptographically linking blocks of data. To be able to build reliable, autonomous and trusted IoT platforms, DLT has the potential to provide security, privacy and decentralized operation while adhering to the limitations of IoT devices. The marriage of IoT and DLT technology is not very recent. In fact many projects have been focusing on this interesting combination to address the challenges of smart cities, smart grids, internet of everything and other decentralized applications, most based on blockchain structures. In this special issue, the focus is on the new and broader technical problems associated with the DLT-based security and backend platform solutions for IoT devices and applications.Article Citation - WoS: 29Citation - Scopus: 38An Efficient Framework for Visible-Infrared Cross Modality Person Re-Identification(Elsevier, 2020) Gökmen, Muhittin; Başaran, Emrah; Kamasak, Mustafa E.Visible-infrared cross-modality person re-identification (VI-ReId) is an essential task for video surveillance in poorly illuminated or dark environments. Despite many recent studies on person re-identification in the visible domain (ReId), there are few studies dealing specifically with VI-ReId. Besides challenges that are common for both ReId and VI-ReId such as pose/illumination variations, background clutter and occlusion, VI-ReId has additional challenges as color information is not available in infrared images. As a result, the performance of VI-ReId systems is typically lower than that of ReId systems. In this work, we propose a four-stream framework to improve VI-ReId performance. We train a separate deep convolutional neural network in each stream using different representations of input images. We expect that different and complementary features can be learned from each stream. In our framework, grayscale and infrared input images are used to train the ResNet in the first stream. In the second stream, RGB and three-channel infrared images (created by repeating the infrared channel) are used. In the remaining two streams, we use local pattern maps as input images. These maps are generated utilizing local Zernike moments transformation. Local pattern maps are obtained from grayscale and infrared images in the third stream and from RGB and three-channel infrared images in the last stream. We improve the performance of the proposed framework by employing a re-ranking algorithm for post-processing. Our results indicate that the proposed framework outperforms current state-of-the-art with a large margin by improving Rank-1/mAP by 29.79%/30.91% on SYSU-MM01 dataset, and by 9.73%/16.36% on RegDB dataset.Article Citation - WoS: 9Citation - Scopus: 11An Efficient Multiscale Scheme Using Local Zernike Moments for Face Recognition(MDPI, 2018) Gökmen, Muhittin; Başaran, Emrah; Kamasak, Mustafa E.In this study, we propose a face recognition scheme using local Zernike moments (LZM), which can be used for both identification and verification. In this scheme, local patches around the landmarks are extracted from the complex components obtained by LZM transformation. Then, phase magnitude histograms are constructed within these patches to create descriptors for face images. An image pyramid is utilized to extract features at multiple scales, and the descriptors are constructed for each image in this pyramid. We used three different public datasets to examine the performance of the proposed method:Face Recognition Technology (FERET), Labeled Faces in the Wild (LFW), and Surveillance Cameras Face (SCface). The results revealed that the proposed method is robust against variations such as illumination, facial expression, and pose. Aside from this, it can be used for low-resolution face images acquired in uncontrolled environments or in the infrared spectrum. Experimental results show that our method outperforms state-of-the-art methods on FERET and SCface datasets.Article Citation - WoS: 19Citation - Scopus: 27An Evaluation of Recent Neural Sequence Tagging Models in Turkish Named Entity Recognition(Elsevier, 2021) Makaroğlu, Didem; Demir, Şeniz; Aras, Gizem; Çakır, AltanNamed entity recognition (NER) is an extensively studied task that extracts and classifies named entities in a text. NER is crucial not only in downstream language processing applications such as relation extraction and question answering but also in large scale big data operations such as real-time analysis of online digital media content. Recent research efforts on Turkish, a less studied language with morphologically rich nature, have demonstrated the effectiveness of neural architectures on well-formed texts and yielded state-of-the art results by formulating the task as a sequence tagging problem. In this work, we empirically investigate the use of recent neural architectures (Bidirectional long short-term memory (BiLSTM) and Transformer-based networks) proposed for Turkish NER tagging in the same setting. Our results demonstrate that transformer-based networks which can model long-range context overcome the limitations of BiLSTM networks where different input features at the character, subword, and word levels are utilized. We also propose a transformer-based network with a conditional random field (CRF) layer that leads to the state-of-the-art result (95.95% f-measure) on a common dataset. Our study contributes to the literature that quantifies the impact of transfer learning on processing morphologically rich languages.Conference Object An Exploratory Study on the Effect of Contour Types on Decision Making Via Optic Brain Imaging Method (fnirs)(eScholarship, 2023) Demircioglu, Esin Tuna; Girişken, Yener; Çakar, TunaDecision-making is a combination of our positive anticipations from the future with the contribution of our past experiences, emotions, and what we perceive at the moment. Therefore, the cues perceived from the environment play an important role in shaping the decisions. Contours, which are the hidden identity of the objects, are among these cues. Aesthetic evaluation, on the other hand, has been shown to have a profound impact on decision-making, both as a subjective experience of beauty and as having an evolutionary background. The aim of this empirical study is to explain the effect of contour types on preference decisions in the prefrontal cortex through risk-taking and aesthetic appraisal. The obtained findings indicated a relation between preference decision, contour type, and PFC subregion. The results of the current study suggest that contour type is an effective cue in decision-making, furthermore, left OFC and right dlPFC respond differently to contour types.Patent Artificial Intelligence Augmented Iterative Product Decoding(2023) Arslan , Şuayb Şefik; Göker, TurguyA method for product decoding within a data storage system includes receiving data to be decoded within a first decoder; performing a plurality of decoding iterations to decode the data utilizing a first decoder and a second decoder; and outputting fully decoded data based on the performance of the plurality of decoding iterations. Each of the plurality of decoding iterations includes (i) decoding the data with the first decoder operating at a first decoder operational mode to generate once decoded data; (ii) sending the once decoded data from the first decoder to the second decoder; (iii) receiving error information from the first decoder with an artificial intelligence system; (iv) selecting a second decoder operational mode based at least in part on the error information that is received by the artificial intelligence system; and (v) decoding the once decoded data with the second decoder operating at the second decoder operational mode to generate twice decoded data; and outputting fully decoded data based on the performance of the plurality of decoding iterations.Conference Object Citation - WoS: 3Citation - Scopus: 3Asymptotically Mds Array Bp-Xor Codes(2018) Arslan, Şuayb ŞefikBelief propagation (BP) on binary erasure channels (BEC) is a low complexity decoding algorithm that allows the recovery of message symbols based on bipartite graph pruning process. Recently, array XOR codes have attracted attention for storage systems due to their burst error recovery performance and easy arithmetic based on Exclusive OR (XOR)-only logic operations. Array BP-XOR codes are a subclass of array XOR codes that can be decoded using BP under BEC. Requiring the capability of BP-decodability in addition to Maximum Distance Separability (MDS) constraint on the code construction process is observed to put an upper bound on the achievable code block-length, which leads to the code construction process to become a hard problem. In this study, we introduce asymptotically MDS array BP-XOR codes that are alternative to exact MDS array BP-XOR codes to allow for easier code constructions while keeping the decoding complexity low with an asymptotically vanishing coding overhead. We finally provide a code construction method that is based on discrete geometry to fulfill the requirements of the class of asymptotically MDS array BP-XOR codes.Conference Object Base Station-Assisted Cooperative Network Coding for Cellular Systems With Link Constraints(IEEE, 2022) Arslan, Suayb S.; Pourmandi, Massoud; Haytaoglu, ElifWe consider a novel distributed data storage/caching scenario in a cellular network, where multiple nodes may fail/depart simultaneously To meet reliability, we allow cooperative regeneration of lost nodes with the help of base stations allocated in a set of hierarchical layers1. Due to this layered structure, a symbol download from each base station has a different cost, while the link capacities between the nodes of the cellular system and the base stations are also constrained. Under such a setting, we formulate the fundamental trade-off with closed form expressions between repair bandwidth cost and the storage space per node. Particularly, the minimum storage as well as bandwidth cost points are formulated. Finally, we provide an explicit optimal code construction for the minimum storage regeneration point for a special set of system parameters.Article Citation - Scopus: 4Classification of Skin Lesion Images With Deep Learning Approaches(University of Latvia, 2022) Kulavuz, Bahadır; Ertuğrul, Berkay; Bakırman, Tolga; Çakar, Tuna; Doğan, Metehan; Bayram, Bülent; Bayram, BuketSkin cancer is one of the most dangerous cancer types in the world. Like any other cancer type, early detection is the key factor for the patient's recovery. Integration of artificial intelligence with medical image processing can aid to decrease misdiagnosis. The purpose of the article is to show that deep learning-based image classification can aid doctors in the healthcare field for better diagnosis of skin lesions. VGG16 and ResNet50 architectures were chosen to examine the effect of CNN networks on the classification of skin cancer types. For the implementation of these networks, the ISIC 2019 Challenge has been chosen due to the richness of data. As a result of the experiments, confusion matrices were obtained and it was observed that ResNet50 architecture achieved 91.23% accuracy and VGG16 architecture 83.89% accuracy. The study shows that deep learning methods can be sufficiently exploited for skin lesion image classification. © 2022 Baltic Journal of Modern Computing. All rights reserved.Article Comparing Humans and Deep Neural Networks on Face Recognition Under Various Distance and Rotation Viewing Conditions(Journal of Vision, 2023) Fux, Michal; Arslan , Şuayb Şefik; Jang, Hojin; Boix, Xavier; Cooper, Avi; Groth, Matt J; Sinha, PawanHumans possess impressive skills for recognizing faces even when the viewing conditions are challenging, such as long ranges, non-frontal regard, variable lighting, and atmospheric turbulence. We sought to characterize the effects of such viewing conditions on the face recognition performance of humans, and compared the results to those of DNNs. In an online verification task study, we used a 100 identity face database, with images captured at five different distances (2m, 5m, 300m, 650m and 1000m) three pitch values (00 - straight ahead, +/- 30 degrees) and three levels of yaw (00, 45, and 90 degrees). Participants were presented with 175 trials (5 distances x 7 yaw and pitch combinations, with 5 repetitions). Each trial included a query image, from a certain combination of range x yaw x pitch, and five options, all frontal short range (2m) faces. One was of the same identity as the query, and the rest were the most similar identities, chosen according to a DNN-derived similarity matrix. Participants ranked the top three most similar target images to the query image. The collected data reveal the functional relationship between human performance and multiple viewing parameters. Nine state-of-the-art pre-trained DNNs were tested for their face recognition performance on precisely the same stimulus set. Strikingly, DNN performance was significantly diminished by variations in ranges and rotated viewpoints. Even the best-performing network reported below 65% accuracy at the closest distance with a profile view of faces, with results dropping to near chance for longer ranges. The confusion matrices of DNNs were generally consistent across the networks, indicating systematic errors induced by viewing parameters. Taken together, these data not only help characterize human performance as a function of key ecologically important viewing parameters, but also enable a direct comparison of humans and DNNs in this parameter regimeArticle Citation - WoS: 9Citation - Scopus: 16Compress-Store on Blockchain: a Decentralized Data Processing and Immutable Storage for Multimedia Streaming(Springer, 2022) Arslan, Şuayb Şefik; Turguy, GökerDecentralization for data storage is a challenging problem for blockchain-based solutions as the blocksize plays a key role for scalability. In addition, specific requirements of multimedia data call for various changes in the blockchain technology internals. Considering one of the most popular applications of secure multimedia streaming, i.e., video surveillance, it is not clear how to judiciously encode incentivization, immutability, and compression into a viable ecosystem. In this study, we provide a genuine scheme that achieves this encoding for a video surveillance application. The proposed scheme provides a novel integration of data compression, immutable off-chain data storage using a new consensus protocol namely, Proof-of-WorkStore (PoWS) in order to enable fully useful work to be performed by the miner nodes of the network. The proposed idea is the first step towards achieving greener application of a blockchain-based environment to the video storage business that utilizes system resources efficiently.Article Cooperative Network Coding for Distributed Storage Using Base Stations With Link Constraints(arXiv, 2021) Arslan, Şuayb Şefik; Pourmandi, Massoud; Haytaoğlu, ElifIn this work, we consider a novel distributed data storage/caching scenario in a cellular setting where multiple nodes may fail/depart at the same time. In order to maintain the target reliability, we allow cooperative regeneration of lost nodes with the help of base stations allocated in a set of hierarchical layers. Due to this layered structure, a symbol download from each base station has a different cost, while the link capacities connecting the nodes of the cellular system and the base stations are also limited. In this more practical and general scenario, we present the fundamental trade-off between repair bandwidth cost and the storage space per node. Particularly interesting operating points are the minimum storage as well as bandwidth cost points in this trade-off curve. We provide closed-form expressions for the corresponding bandwidth (cost) and storage space per node for these operating points. Finally, we provide an explicit optimal code construction for the minimum storage regeneration point for a given set of system parameters.Conference Object Customer Segmentation and Churn Prediction via Customer Metrics(IEEE, 2022) Bozkan, Tunahan; Cakar, Tuna; Sayar, Alperen; Ertugrul, SeyitIn this study, it is aimed to predict whether customers operating in the factoring sector will continue to trade in the next three months after the last transaction date, using data-driven machine learning models, based on their past transaction movements and their risk, limit and company data. As a result of the models established, Loss Analysis (Churn) of two different customer groups (Real and Legal factory) was carried out. It was estimated by the XGBoost model with an F1 Score of 74% and 77%. Thanks to this modeling, it was aimed to increase the retention rate of customers through special promotions and campaigns to be made to these customer groups, together with the prediction of the customers who will leave. Thanks to the increase in retention rates, a direct contribution to the transaction volume on a company basis was ensured.Article Citation - WoS: 3Citation - Scopus: 3Designing restorative landscapes for students: A Kansei engineering approach enhanced by VR and EEG technologies(Elsevier, 2024) Karaca, Elif; Çakar, Tuna; Karaca, Mehmet; Gul, Hasan Huseyin MiracThis study explores the alignment of specific landscape features within school environments with the core elements of Attention Restoration Theory (ART) that includes Coherence, Fascination, Compatibility, and Being Away. Utilizing Kansei Engineering, this research integrates emotional analysis into landscape design by employing Virtual Reality (VR) and Electroencephalogram (EEG) technologies to record students' responses to different landscape simulations. Analytical techniques, including the Taguchi Method and Analysis of Variance (ANOVA), were applied to evaluate the data. The findings have revealed that students associate a sense of enclosure with a coherent landscape and openness with a fascinating landscape, the lawn's significance was also highlighted for coherent landscape. However, limited insights were gained regarding Compatibility and Being Away. The study advocates for diverse cognitive zones within school landscapes to promote mental restoration, emphasizing the need for varied design elements that cater to the elevated experience of students.Article Detecting the Effect of Voice-Over in Tv Ads Via Optic Brain Imaging (fnirs) and In-Depth Interview Methods(2016) Çakar, Tuna; Girisken, YenerVoice-overs are used extensively to increase the effectiveness of the TV ads especially in the last decade. The main purpose is to provide the brand message via a clear feature that will inevitably grab the attention of the viewers. The current study contains the neuro tests of 12 TV ads in banking and finance sectors on 168 participants in 8 groups. Optic brain imaging (fNIRS) and in-depth interviews were the methodologies utilized during the test of these TV ads. The obtained results indicate that the use of voice-over during the TV ads possibly causes the decrease in attention and emotional engagement levels of the participants.Conference Object Dog Walker Segmentation(IEEE, 2022) Ercan, Alperen; Karan, Baris; Çakar, TunaIn this study dog walkers were separated into clusters according to walkers' walk habits. Due to the fact that the distributions were non-normal, normalization algorithms were applied before the onset of clustering. After normalizing, K Means algorithm and Gaussian Mixture Models used for finding optimum cluster count. According to these clusters, walkers' consecutive months separated to follow-up their behavioral traits. This part of the study adds value to the project to examine walkers' behaviors closer.Article Citation - WoS: 6Citation - Scopus: 12During the Covid-19 Pandemic, Students' Opinions on Distance Education in Department of Engineering(International Association of Online Engineering (IAOE), 2022) Zaripova, Zülfiya F.; Karahoca, Dilek; Chikileva, Lyudmila S.; Lyalyaev, Sergey V.; Xu, Baoyun; Bayanova, Almira R.The decision regarding the distance education method in Turkey on March 15, 2020, has completely changed the learning and teaching methodology of all university students and educators, and it has been seen that all courses have started to be given with distance education. The purpose of this research is to examine the perspectives of engineering university students towards distance education during the Covid-19 pandemic. The research consists of engineering faculty students studying at various universities in the Aegean region and Russian Federation. In the research, a scanning model was used. The data of the research were collected from 520 engineering department university students from various universities in our country, according to the convenience sampling method, and through an online questionnaire filled out by the students. Thanks to this wide participation, results have been obtained that will explain the Covid-19 process related to distance education in a good way. In general, it has been concluded that students are happy to see them in distance education model courses, so they do not fall behind in their education, and university students watch their courses mostly with the help of smart devices.Conference Object Eaft: Evolutionary Algorithms for Gcc Flag Tuning(IEEE, 2022) Tagtekin, Burak; Çakar, TunaDue to limited resources, some methods come to the fore in finding and applying the factors that affect the working time of the code. The most common one is choosing the correct GCC flags using heuristic algorithms. For the codes compiled with GCC, the selection of optimization flags directly affects the speed of the processing, however, choosing the right one among hundreds of markers during this process is a resource consuming problem. This article explains how to solve the GCC flag optimization problem with EAFT. Rather than other autotuner tools such as Opentuner, EAFT is an optimized tool for GCC marker selection. Search infrastructure has been developed with particle swarm optimization and genetic algorithm with diffent submodels rather than using only Genetic Algorithm like FOGA. © 2022 IEEE.Conference Object Citation - Scopus: 2Emg-Based Bci for Picar Mobilization(IEEE, 2022) Yilmaz, Yasin; Günden, Burak Bahri; Ertekin, Efe; Sayar, Alperen; Çakar, Tuna; Arslan, Şefik ŞuaybIn this study, the main scope was to develop a brain-computer interface (BCI) with the use of PiCar and EEG/ERP devices. Thus, it is aimed to facilitate the lives of people with certain diseases and disabilities. The ultimate goal of this project has been to direct and control a BCI-based PiCar concerning the signals captured via the EEG/ERP device. With the EEG headset, the EMG signals of the gestures (facial expressions) of the participant were captured. With the collected data, filtering and other preprocessing methods were applied to have noise-free signals. In the preprocessing, the detrending method was used to clean the data set which showed a constantly increasing trend, to a certain range, and zero trends. The denoising (Wavelet Denoising) and outlier detection/elimination methods (OneClassSVM) were used for noise elimination. The SMOTE oversampling method was used for data augmentation. Welch's method was used to get band powers from the signals. With the use of augmented data, several machine learning algorithms were applied such as Support Vector Machine, Logistic Regression, Linear Discriminant Analysis, Random forest Classifier, Gradient Boosting Classifier, Multinomial Naive Bayes, Decision tree, K-Nearest Neighbor, and voting classifier. The developed models were used to predict the direction that is passed as an input to PiCar's API. After that, PiCar was controlled concerning the predicted direction with HTTP GET requests. In this project, the OpenBCI headset and the Brainflow library for EEG/EMG signal obtaining and processing were used. Also, the Tkinter library was used for the Graphical user interface and Django for establishing a server on PiCar's brain which is RaspberryPi. © 2022 IEEE.Article Citation - WoS: 8Citation - Scopus: 7Enhanced Primordial Gravitational Waves From a Stiff Postinflationary Era Due To an Oscillating Inflaton(Amer Physical Soc, 2024) Chen, Chao; Dimopoulos, Konstantinos; Eroncel, Cem; Ghoshal, AnishWe investigate two classes of inflationary models, which lead to a stiff period after inflation that boosts the signal of primordial gravitational waves (GWs). In both families of models studied, we consider an oscillating scalar condensate, which when far away from the minimum is overdamped by a warped kinetic term, a la alpha-attractors. This leads to successful inflation. The oscillating condensate is in danger of becoming fragmented by resonant effects when nonlinearities take over. Consequently, the stiff phase cannot be prolonged enough to enhance primordial GWs at frequencies observable in the near future for low orders of the envisaged scalar potential. However, this is not the case for a higher-order scalar potential. Indeed, we show that this case results in a boosted GW spectrum that overlaps with future observations without generating too much GW radiation to destabilize big bang nucleosynthesis. For example, taking alpha=O(1), we find that the GW signal can be safely enhanced up to Omega(GW) (f)similar to 10(-11) at frequency f similar to 10(2) Hz, which will be observable by the Einstein Telescope. Our mechanism ends up with a characteristic GW spectrum, which if observed, can lead to the determination of the inflation energy scale, the reheating temperature, and the shape (steepness) of the scalar potential around the minimum.
- «
- 1 (current)
- 2
- 3
- »
