Makine Mühendisliği Bölümü Koleksiyonu
Permanent URI for this collectionhttps://hdl.handle.net/20.500.11779/1944
Browse
Browsing Makine Mühendisliği Bölümü Koleksiyonu by Author "Arısoy, Ahmet"
Now showing 1 - 2 of 2
- Results Per Page
- Sort Options
Article Citation - WoS: 1Citation - Scopus: 11441. Quantification of the Flow Noise in Household Refrigerators(JVE INTERNATIONAL LTD., 2014) Körük, Hasan; Arısoy, Ahmet; Bilgin, NecatiThe flow noise in household refrigerators is quantified in this study. First, the sound pressure measurements in a quiet room using typical household refrigerators are conducted and the noise characteristics of the refrigerators are presented. Then, the flow noise in household refrigerators is quantified using the results of the overall analysis and Fourier transform of the measured sound pressure data. After that, the flow noise in household refrigerators is quantified using the sound pressure measurements conducted using a specially designed test rig. The frequency characteristics of the flow noise in household refrigerators are also explored and the contribution of the flow noise is identified.Article Citation - WoS: 7Citation - Scopus: 9Identification of Crack Noises in Household Refrigerators(Elsevier, 2015) Körük, Hasan; Arısoy, AhmetThe crack noises propagating from a refrigerator disturb residents in a household; however, the reasons behind the mechanisms of such noises have not been identified yet. In this study, the crack noises in modern household refrigerators are identified and their root causes are explored. The appropriate parameters for overall and Fourier analyses are first determined and the noise characteristics of typical household refrigerators under various conditions are presented. Then, a special test rig providing remote control of the subcomponents including the compressor, fan and heater is designed and structural acceleration and sound pressure measurements inside and outside the test rig in a quiet room are performed. The acoustic and vibration measurements are conducted under various conditions by separately controlling each subcomponent. The crack noises in typical household refrigerators are identified and their root causes are explored by using the results of the overall and Fourier analyses. Some solutions to minimize the crack noises in household refrigerators are also summarized.